Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte

被引:36
作者
Wu, Borong [1 ]
Ren, Yonghuan [1 ]
Mu, Daobin [1 ]
Liu, Xiaojiang [2 ]
Zhao, Jincheng [2 ]
Wu, Feng [1 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] China Acad Engn Phys, Inst Elect Engn, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluoroethylene carbonate; Low-temperature electrolyte; Lithium iron phosphate; Rate capability; LI-ION BATTERY; RECHARGEABLE BATTERIES; CRYSTAL ORIENTATION; LOCAL-STRUCTURE; COATED LIFEPO4; LITHIUM; GRAPHITE; VINYLENE; SALT;
D O I
10.1007/s10008-012-1927-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of the fluoroethylene carbonate (FEC) addition in electrolyte on LiFePO4 cathode performance was investigated in low-temperature electrolyte LiPF6/EC/PC/EMC (0.14/0.18/0.68). Cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge tests were conducted in this work. In the presence of FEC, the polarization of LiFePO4 electrode decreased both at room and low temperatures. Meanwhile, the exchange current density increased. The rate capability of LiFePO4 electrode was greatly enhanced as well. The morphology of the solid electrolyte interphase (SEI) on LiFePO4 surface was modified with the addition of FEC as confirmed by scanning electron microscopy measurement. A compact film with small impedance was formed on LiFePO4 surface compared to the case of FEC-free. The compositions of the film were analyzed by X-ray photoelectron spectroscopic measurement. The contents of Li (x) PO (y) F (z) , LiF, and the carbonate species generated from solvents decomposition were reduced. The modified SEI promoted the migration of lithium ion through the electrode/electrolyte interphase and enhanced the electrochemical performance of the cathode.
引用
收藏
页码:811 / 816
页数:6
相关论文
共 26 条
[1]   Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations [J].
Abouimrane, A. ;
Ding, J. ;
Davidson, I. J. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :693-696
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[4]   Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: Complexing agent effect [J].
Brochu, F. ;
Guerfi, A. ;
Trottier, J. ;
Kopec, M. ;
Mauger, A. ;
Groult, H. ;
Julien, C. M. ;
Zaghib, K. .
JOURNAL OF POWER SOURCES, 2012, 214 :1-6
[5]   Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0 < x ≤ 1 and y=0.0, 0.5 and 1.0 [J].
Burba, Christopher A. ;
Frech, Roger .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :870-876
[6]   Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries [J].
Chang, Zhao-Rong ;
Lv, Hao-Jie ;
Tang, Hong-Wei ;
Li, Hua-Ji ;
Yuan, Xiao-Zi ;
Wang, Haijiang .
ELECTROCHIMICA ACTA, 2009, 54 (20) :4595-4599
[7]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[8]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[9]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[10]   Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes [J].
Etacheri, Vinodkumar ;
Haik, Ortal ;
Goffer, Yossi ;
Roberts, Gregory A. ;
Stefan, Ionel C. ;
Fasching, Rainier ;
Aurbach, Doron .
LANGMUIR, 2012, 28 (01) :965-976