Rydberg atom quantum technologies

被引:270
作者
Adams, C. S. [1 ]
Pritchard, J. D. [2 ]
Shaffer, J. P. [3 ]
机构
[1] Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England
[2] Univ Strathclyde, Dept Phys, John Anderson Bldg,107 Rottenrow East, Glasgow G4 0NG, Lanark, Scotland
[3] Quantum Valley Ideas Labs, 485 West Graham Way, Waterloo, ON N2L 0A7, Canada
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
quantum technology; Rydberg atoms; quantum sensing; quantum computing; quantum optics; nonlinear optics; NONLINEAR OPTICS; SINGLE ATOMS; ELECTROMETRY; INFORMATION; COMPUTATION; GATES;
D O I
10.1088/1361-6455/ab52ef
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This topical review addresses how Rydberg atoms can serve as building blocks for emerging quantum technologies. Whereas the fabrication of large numbers of artificial quantum systems with the uniformity required for the most attractive applications is difficult if not impossible, atoms provide stable quantum systems which, for the same species and isotope, are all identical. Whilst atomic ground states provide scalable quantum objects, their applications are limited by the range over which their properties can be varied. In contrast, Rydberg atoms offer strong and controllable atomic interactions that can be tuned by selecting states with different principal quantum number or orbital angular momentum. In addition Rydberg atoms are comparatively long-lived, and the large number of available energy levels and their separations allow coupling to electromagnetic fields spanning over 6 orders of magnitude in frequency. These features make Rydberg atoms highly desirable for developing new quantum technologies. After giving a brief introduction to how the properties of Rydberg atoms can be tuned, we give several examples of current areas where the unique advantages of Rydberg atom systems are being exploited to enable new applications in quantum computing, electromagnetic field sensing, and quantum optics.
引用
收藏
页数:13
相关论文
共 146 条
[1]   An optical tweezer array of ultracold molecules [J].
Anderegg, Loic ;
Cheuk, Lawrence W. ;
Bao, Yicheng ;
Burchesky, Sean ;
Ketterle, Wolfgang ;
Ni, Kang-Kuen ;
Doyle, John M. .
SCIENCE, 2019, 365 (6458) :1156-+
[2]   Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor Cell [J].
Anderson, D. A. ;
Miller, S. A. ;
Raithel, G. ;
Gordon, J. A. ;
Butler, M. L. ;
Holloway, C. L. .
PHYSICAL REVIEW APPLIED, 2016, 5 (03)
[3]  
Anderson D. A., 2018, ARXIV180808589
[4]  
[Anonymous], 1957, Quantum Mechanics of Oneand Two-Electron Atoms
[5]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[6]   Blueprint for fault-tolerant quantum computation with Rydberg atoms [J].
Auger, James M. ;
Bergamini, Silvia ;
Browne, Dan E. .
PHYSICAL REVIEW A, 2017, 96 (05)
[7]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Dephasing of Multiparticle Rydberg Excitations for Fast Entanglement Generation [J].
Bariani, F. ;
Dudin, Y. O. ;
Kennedy, T. A. B. ;
Kuzmich, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (03)
[9]   Demonstration of a Strong Rydberg Blockade in Three-Atom Systems with Anisotropic Interactions [J].
Barredo, D. ;
Ravets, S. ;
Labuhn, H. ;
Beguin, L. ;
Vernier, A. ;
Nogrette, F. ;
Lahaye, T. ;
Browaeys, A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (18)
[10]   Synthetic three-dimensional atomic structures assembled atom by atom [J].
Barredo, Daniel ;
Lienhard, Vincent ;
De Leseleuc, Sylvain ;
Lahaye, Thierry ;
Browaeys, Antoine .
NATURE, 2018, 561 (7721) :79-82