Existence of ground states for aggregation-diffusion equations

被引:15
作者
Carrillo, J. A. [1 ]
Delgadino, M. C. [1 ]
Patacchini, F. S. [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15203 USA
基金
英国工程与自然科学研究理事会;
关键词
Interaction potentials; (non)linear diffusion; (non)existence of minimizers; stationary states; Wasserstein metric; LARGE TIME BEHAVIOR; KELLER-SEGEL MODEL; CRITICAL MASS; DEGENERATE DIFFUSION; GLOBAL MINIMIZERS; NONLOCAL MODEL; CONVERGENCE; FUNCTIONALS; EQUILIBRIA; PRINCIPLE;
D O I
10.1142/S0219530518500276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential under which the corresponding free energy functional has ground states or not.
引用
收藏
页码:393 / 423
页数:31
相关论文
共 57 条
  • [1] Albi G, 2017, MODEL SIMUL SCI ENG, P49, DOI 10.1007/978-3-319-49996-3_2
  • [2] Ambrosio L., 2004, Quad. Mat., V14, P1
  • [3] Ambrosio Luigi, 2008, Lectures in Mathematics ETH Zurich, V2nd
  • [4] [Anonymous], PREPRINT
  • [5] PHASE TRANSITIONS IN A KINETIC FLOCKING MODEL OF CUCKER-SMALE TYPE
    Barbaro, Alethea B. T.
    Canizo, Jose A.
    Carrillo, Jose A.
    Degond, Pierre
    [J]. MULTISCALE MODELING & SIMULATION, 2016, 14 (03) : 1063 - 1088
  • [6] Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion
    Bedrossian, Jacob
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1927 - 1932
  • [7] A non-Maxwellian steady distribution for one-dimensional granular media
    Benedetto, D
    Caglioti, E
    Carrillo, JA
    Pulvirenti, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) : 979 - 990
  • [8] Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
  • [9] Billingsley P., 2012, WILEY SERIES PROBABI
  • [10] Blanchet A., 2006, Electron. Differential Equations, V2006, P1