Filling invalid values in a lidar-derived canopy height model with morphological crown control

被引:44
|
作者
Zhao, Dan [1 ]
Pang, Yong [1 ]
Li, Zengyuan [1 ]
Sun, Guoqing [2 ]
机构
[1] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
关键词
SMALL-FOOTPRINT; AIRBORNE LIDAR; DECIDUOUS FOREST; DENSITY LIDAR; TREE HEIGHTS; LEAF-OFF; CLASSIFICATION; BIOMASS; IMAGERY;
D O I
10.1080/01431161.2013.779398
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The light detection and ranging (lidar) technique has rapidly developed worldwide in numerous fields. The canopy height model (CHM), which can be generated from lidar data, is a useful model in forestry research. The CHM shows the canopy height above ground, and it indicates vertical elevation changes and the horizontal distribution of the canopy's upper surface. Many vegetation parameters, which are important in forest inventory, can be extracted from the CHM. However, some abnormal or sudden changes of the height values (i.e. invalid values), which appear as unnatural holes in an image, exist in CHMs. This article proposes an approach to fill the invalid values in lidar-derived CHMs with morphological crown control. First, the Laplacian operator is applied to an original CHM to determine possible invalid values. Then, the morphological closing operator is applied to recover the crown coverage. By combining the two results, the possible invalid values in the CHM can be confirmed and replaced by corresponding values in the median-filtered CHM. The filling results from this new method are compared with those from other methods and with charge-coupled device images for evaluation. Finally, a CHM with random noise is used to test the filling correctness of the algorithm. The experiments show that this approach can fill the most invalid values well while refraining from overfilling.
引用
收藏
页码:4636 / 4654
页数:19
相关论文
共 50 条
  • [1] Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation
    Mielcarek, Milosz
    Sterenczak, Krzysztof
    Khosravipour, Anahita
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 71 : 132 - 143
  • [2] Errors in LiDAR-derived shrub height and crown area on sloped terrain
    Glenn, N. F.
    Spaete, L. P.
    Sankey, T. T.
    Derryberry, D. R.
    Hardegree, S. P.
    Mitchell, J. J.
    JOURNAL OF ARID ENVIRONMENTS, 2011, 75 (04) : 377 - 382
  • [3] Correction of UAV LiDAR-derived grassland canopy height based on scan angle
    Xu, Cong
    Zhao, Dan
    Zheng, Zhaoju
    Zhao, Ping
    Chen, Junhua
    Li, Xiuwen
    Zhao, Xueming
    Zhao, Yujin
    Liu, Wenjun
    Wu, Bingfang
    Zeng, Yuan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [4] Impact of Error in Lidar-Derived Canopy Height and Canopy Base Height on Modeled Wildfire Behavior in the Sierra Nevada, California, USA
    Kelly, Maggi
    Su, Yanjun
    Di Tommaso, Stefania
    Fry, Danny L.
    Collins, Brandon M.
    Stephens, Scott L.
    Guo, Qinghua
    REMOTE SENSING, 2018, 10 (01):
  • [5] Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry
    Stone, C.
    Webster, M.
    Osborn, J.
    Iqbal, I.
    AUSTRALIAN FORESTRY, 2016, 79 (04) : 271 - 282
  • [6] Scaling lidar-derived rainforest canopy metrics across a Mesoamerican landscape
    Swanson, A. Christine
    Weishampel, John F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (24) : 9181 - 9207
  • [7] Algorithm for improving the co-registration of LiDAR-derived digital canopy height models and field data
    Pascual, Cristina
    Martin-Fernandez, Susana
    Garcia-Montero, Luis G.
    Garcia-Abril, Antonio
    AGROFORESTRY SYSTEMS, 2013, 87 (05) : 967 - 975
  • [8] Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia
    Ota, Tetsuji
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    Kajisa, Tsuyoshi
    Mizoue, Nobuya
    Yoshida, Shigejiro
    Takao, Gen
    Hirata, Yasumasa
    Furuya, Naoyuki
    Sano, Takio
    Heng, Sokh
    Vuthy, Ma
    REMOTE SENSING, 2014, 6 (11) : 10750 - 10772
  • [9] Modelling Forest Species Using Lidar-Derived Metrics of Forest Canopy Gaps
    Lombard, Leighton
    Ismail, Riyad
    Poona, Nitesh K.
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2020, 9 (01): : 31 - 43
  • [10] Airborne LiDAR-Derived Digital Elevation Model for Archaeology
    Stular, Benjamin
    Lozic, Edisa
    Eichert, Stefan
    REMOTE SENSING, 2021, 13 (09)