On Astala's theorem for martingales and Fourier multipliers

被引:5
作者
Banuelos, Rodrigo [1 ]
Osekowski, Adam [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
基金
美国国家科学基金会;
关键词
Fourier multipliers; Beurling-Ahlfors operator; Martingale inequalities; CONVEX INTEGRATION; AREA DISTORTION; L-P; COUNTEREXAMPLES; REGULARITY; SUBORDINATION; INEQUALITIES; ZEROS;
D O I
10.1016/j.aim.2015.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a large class of symbols m on R-d, d >= 2, for which the corresponding Fourier multipliers T-m satisfy the following inequality. If D, E are measurable subsets of R-d with E subset of D and vertical bar D vertical bar < infinity, then integral(D\E) vertical bar T-m chi E(x)vertical bar dx <= { vertical bar E vertical bar + vertical bar E vertical bar ln (vertical bar D vertical bar/2 vertical bar E vertical bar), if vertical bar E vertical bar < vertical bar D vertical bar/2, vertical bar D\E vertical bar+1/2 vertical bar D\E vertical bar ln (vertical bar E vertical bar/vertical bar D\E vertical bar), if vertical bar E vertical bar >= vertical bar D vertical bar/2. Here vertical bar center dot vertical bar denotes the Lebesgue measure on R-d. When d = 2, these multipliers include the real and imaginary parts of the Beurling-Ahlfors operator B and hence the inequality is also valid for B with the right-hand side multiplied by root 2. The inequality is sharp for the real and imaginary parts of B. This work is motivated by K. Astala's celebrated results on the Gehring-Reich conjecture concerning the distortion of area by quasiconformal maps. The proof rests on probabilistic methods and exploits a family of appropriate novel sharp inequalities for differentially subordinate martingales. These martingale bounds are of interest on their own right. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
  • [41] Noncommutative dyadic martingales and Walsh-Fourier series
    Jiao, Yong
    Zhou, Dejian
    Wu, Lian
    Zanin, Dmitriy
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 550 - 574
  • [42] Fourier multipliers, symbols, and nuclearity on compact manifolds
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (02): : 757 - 800
  • [43] The space of maximal Fourier multipliers as a dual space
    Tomita, Naohito
    STUDIA MATHEMATICA, 2006, 176 (03) : 191 - 200
  • [44] Maximal operators associated with Fourier multipliers and applications
    Lee, Jin Bong
    Seo, Jinsol
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (08)
  • [45] Transference and restriction of Fourier multipliers on Orlicz spaces
    Blasco, Oscar
    Uster, Ruya
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5400 - 5425
  • [46] Unimodular Fourier multipliers on Wiener amalgam spaces
    Cunanan, Jayson
    Sugimoto, Mitsuru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 738 - 747
  • [47] Unimodular bilinear Fourier multipliers on Lp spaces
    Kaur, Jotsaroop
    Shrivastava, Saurabh
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 87 - 103
  • [48] Littlewood–Paley Equivalence and Homogeneous Fourier Multipliers
    Shuichi Sato 
    Integral Equations and Operator Theory, 2017, 87 : 15 - 44
  • [49] Estimate of the Fourier multipliers in the spherical mean setting
    Majjaouli, B.
    Omri, S.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (03) : 533 - 549
  • [50] Fourier multipliers on weighted Lp-spaces
    Quek, TS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) : 2343 - 2351