On Astala's theorem for martingales and Fourier multipliers

被引:5
|
作者
Banuelos, Rodrigo [1 ]
Osekowski, Adam [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
基金
美国国家科学基金会;
关键词
Fourier multipliers; Beurling-Ahlfors operator; Martingale inequalities; CONVEX INTEGRATION; AREA DISTORTION; L-P; COUNTEREXAMPLES; REGULARITY; SUBORDINATION; INEQUALITIES; ZEROS;
D O I
10.1016/j.aim.2015.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a large class of symbols m on R-d, d >= 2, for which the corresponding Fourier multipliers T-m satisfy the following inequality. If D, E are measurable subsets of R-d with E subset of D and vertical bar D vertical bar < infinity, then integral(D\E) vertical bar T-m chi E(x)vertical bar dx <= { vertical bar E vertical bar + vertical bar E vertical bar ln (vertical bar D vertical bar/2 vertical bar E vertical bar), if vertical bar E vertical bar < vertical bar D vertical bar/2, vertical bar D\E vertical bar+1/2 vertical bar D\E vertical bar ln (vertical bar E vertical bar/vertical bar D\E vertical bar), if vertical bar E vertical bar >= vertical bar D vertical bar/2. Here vertical bar center dot vertical bar denotes the Lebesgue measure on R-d. When d = 2, these multipliers include the real and imaginary parts of the Beurling-Ahlfors operator B and hence the inequality is also valid for B with the right-hand side multiplied by root 2. The inequality is sharp for the real and imaginary parts of B. This work is motivated by K. Astala's celebrated results on the Gehring-Reich conjecture concerning the distortion of area by quasiconformal maps. The proof rests on probabilistic methods and exploits a family of appropriate novel sharp inequalities for differentially subordinate martingales. These martingale bounds are of interest on their own right. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
  • [21] Separating Fourier and Schur Multipliers
    Arhancet, Cedric
    Kriegler, Christoph
    Le Merdy, Christian
    Zadeh, Safoura
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (01)
  • [22] Fourier Multipliers and Dirac Operators
    Craig A. Nolder
    Guanghong Wang
    Advances in Applied Clifford Algebras, 2017, 27 : 1647 - 1657
  • [23] Separating Fourier and Schur Multipliers
    Cédric Arhancet
    Christoph Kriegler
    Christian Le Merdy
    Safoura Zadeh
    Journal of Fourier Analysis and Applications, 2024, 30
  • [24] FOURIER MULTIPLIERS IN BANACH FUNCTION SPACES WITH UMD CONCAVIFICATIONS
    Amenta, Alex
    Lorist, Emiel
    Veraar, Mark
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 4837 - 4868
  • [25] FOURIER MULTIPLIERS ASSOCIATED WITH SINGULAR PARTIAL DIFFERENTIAL OPERATORS
    Baccar, C.
    Ben Hamadi, N.
    Omri, S.
    OPERATORS AND MATRICES, 2017, 11 (01): : 37 - 53
  • [26] Complementation of the subspace of radial multipliers in the space of Fourier multipliers on Rn
    Arhancet, Cedric
    Kriegler, Christoph
    ARCHIV DER MATHEMATIK, 2019, 112 (01) : 93 - 100
  • [27] A Remark on John-Nirenberg Theorem for Martingales
    Li, L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1812 - 1820
  • [28] Littlewood-Paley Theorem, Nikolskii Inequality, Besov Spaces, Fourier and Spectral Multipliers on Graded Lie Groups
    Cardona, Duvan
    Ruzhansky, Michael
    POTENTIAL ANALYSIS, 2024, 60 (03) : 965 - 1005
  • [29] Weighted estimates for conic Fourier multipliers
    Antonio Córdoba
    Keith M. Rogers
    Mathematische Zeitschrift, 2014, 278 : 431 - 440
  • [30] Littlewood-Paley Theorem, Nikolskii Inequality, Besov Spaces, Fourier and Spectral Multipliers on Graded Lie Groups
    Duván Cardona
    Michael Ruzhansky
    Potential Analysis, 2024, 60 : 965 - 1005