Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries

被引:653
作者
Krauskopf, Thorben [1 ]
Richter, Felix H. [1 ,2 ]
Zeier, Wolfgang G. [3 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, D-35392 Giessen, Germany
[3] Univ Munster, Inst Inorgan & Analyt Chem, D-48149 Munster, Germany
关键词
ELECTRON-MICROSCOPE OBSERVATIONS; FINITE-ELEMENT CALCULATIONS; AL STABILIZED LI7LA3ZR2O12; CRITICAL-CURRENT DENSITY; SPIN-LATTICE-RELAXATION; LI ION CONDUCTORS; IN-SITU; CHARGE-TRANSFER; SELF-DIFFUSION; HIGH-ENERGY;
D O I
10.1021/acs.chemrev.0c00431
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing reversible lithium metal anodes with high rate capability is one of the central aims of current battery research. Lithium metal anodes are not only required for the development of innovative cell concepts such as lithium-air or lithium-sulfur batteries, they can also increase the energy density of batteries with intercalation-type cathodes. The use of solid electrolyte separators is especially promising to develop well-performing lithium metal anodes, because they can act as a mechanical barrier to avoid unwanted dendritic growth of lithium through the cell. However, inhomogeneous electrodeposition and contact loss often hinder the application of a lithium metal anode in solid-state batteries. In this review, we assess the physicochemical concepts that describe the fundamental mechanisms governing lithium metal anode performance in combination with inorganic solid electrolytes. In particular, our discussion of kinetic rate limitations and morphological stability intends to stimulate further progress in the field of lithium metal anodes.
引用
收藏
页码:7745 / 7794
页数:50
相关论文
共 477 条
[91]  
Dudney NJ, 2008, ELECTROCHEM SOC INTE, V17, P44
[92]   CHEMICAL-POTENTIAL MEASUREMENTS ON NONHYDROSTATICALLY STRESSED SOLIDS [J].
DURHAM, WB ;
SCHMALZRIED, H .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1987, 91 (05) :556-561
[93]   Surface tension of liquid metals and alloys - Recent developments [J].
Egry, I. ;
Ricci, E. ;
Novakovic, R. ;
Ozawa, S. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2010, 159 (02) :198-212
[94]  
Erdey-Gruz T, 1930, Z PHYS CHEM A-CHEM T, V150, P203
[95]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[96]   INITIATION OF MODE-1 DEGRADATION IN SODIUM-BETA ALUMINA ELECTROLYTES [J].
FELDMAN, LA ;
DEJONGHE, LC .
JOURNAL OF MATERIALS SCIENCE, 1982, 17 (02) :517-524
[97]   Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer [J].
Feng, Wuliang ;
Dong, Xiaoli ;
Zhang, Xiang ;
Lai, Zhengzhe ;
Li, Panlong ;
Wang, Congxiao ;
Wang, Yonggang ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5346-5349
[98]   Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer [J].
Feng, Wuliang ;
Dong, Xiaoli ;
Lai, Zhengzhe ;
Zhang, Xinyue ;
Wang, Yonggang ;
Wang, Congxiao ;
Luo, Jiayan ;
Xia, Yongyao .
ACS ENERGY LETTERS, 2019, 4 (07) :1725-1731
[99]   Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer [J].
Feng, Wuliang ;
Dong, Xiaoli ;
Li, Panlong ;
Wang, Yonggang ;
Xia, Yongyao .
JOURNAL OF POWER SOURCES, 2019, 419 :91-98
[100]   Mechanical properties of metallic lithium: from nano to bulk scales [J].
Fincher, Cole D. ;
Ojeda, Daniela ;
Zhang, Yuwei ;
Pharr, George M. ;
Pharr, Matt .
ACTA MATERIALIA, 2020, 186 :215-222