Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries

被引:653
作者
Krauskopf, Thorben [1 ]
Richter, Felix H. [1 ,2 ]
Zeier, Wolfgang G. [3 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, D-35392 Giessen, Germany
[3] Univ Munster, Inst Inorgan & Analyt Chem, D-48149 Munster, Germany
关键词
ELECTRON-MICROSCOPE OBSERVATIONS; FINITE-ELEMENT CALCULATIONS; AL STABILIZED LI7LA3ZR2O12; CRITICAL-CURRENT DENSITY; SPIN-LATTICE-RELAXATION; LI ION CONDUCTORS; IN-SITU; CHARGE-TRANSFER; SELF-DIFFUSION; HIGH-ENERGY;
D O I
10.1021/acs.chemrev.0c00431
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing reversible lithium metal anodes with high rate capability is one of the central aims of current battery research. Lithium metal anodes are not only required for the development of innovative cell concepts such as lithium-air or lithium-sulfur batteries, they can also increase the energy density of batteries with intercalation-type cathodes. The use of solid electrolyte separators is especially promising to develop well-performing lithium metal anodes, because they can act as a mechanical barrier to avoid unwanted dendritic growth of lithium through the cell. However, inhomogeneous electrodeposition and contact loss often hinder the application of a lithium metal anode in solid-state batteries. In this review, we assess the physicochemical concepts that describe the fundamental mechanisms governing lithium metal anode performance in combination with inorganic solid electrolytes. In particular, our discussion of kinetic rate limitations and morphological stability intends to stimulate further progress in the field of lithium metal anodes.
引用
收藏
页码:7745 / 7794
页数:50
相关论文
共 477 条
[1]   Ionic conducting lanthanide oxides [J].
Adachi, GY ;
Imanaka, N ;
Tamura, S .
CHEMICAL REVIEWS, 2002, 102 (06) :2405-2429
[2]  
Addison C., 1984, CHEM LIQUID ALKALI M
[3]   Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes [J].
Afyon, Semih ;
Kravchyk, Kostiantyn V. ;
Wang, Shutao ;
van den Broek, Jan ;
Haensel, Christian ;
Kovalenko, Maksym V. ;
Rupp, Jennifer L. M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) :21299-21308
[4]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[5]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[6]   Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery [J].
Alexander, George V. ;
Indu, M. S. ;
Kamakshy, Selvajyothi ;
Murugan, Ramaswamy .
ELECTROCHIMICA ACTA, 2020, 332
[7]   Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J].
Allen, J. L. ;
Wolfenstine, J. ;
Rangasamy, E. ;
Sakamoto, J. .
JOURNAL OF POWER SOURCES, 2012, 206 :315-319
[8]  
[Anonymous], 2017, LITHIUM METAL ANODES
[9]  
[Anonymous], 2016, LITHIUM BATTERIES
[10]  
[Anonymous], 2016, THESIS