Finite-differences discretizations of the Mumford-Shah functional

被引:0
作者
Chambolle, A [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
来源
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1999年 / 33卷 / 02期
关键词
free discontinuity problems; Gamma-convergence; special bounded variation (SBV) functions; finite differences; image processing;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
About two years ago, Gobbino [21] gave a proof of a De Giorgi's conjecture on the approximation of the Mumford-Shah energy by means of finite-differences based non-local functionals. In this work, we introduce a discretized version of De Giorgi's approximation, that may be seen as a generalization of Blake and Zisserman's "weak membrane" energy (first introduced in the image segmentation framework). A simple adaptation. of Gobbino's results allows us to compute the Gamma-limit of this discrete functional as the discretization step goes to zero this generalizes a previous work by the author on the "weak membrane" model [10]. We deduce how to design in a systematic way discrete image segmentation functionals with "less anisotropy" than Blake and Zisserman's original energy, and we show in some numerical experiments how it improves the method.
引用
收藏
页码:261 / 288
页数:28
相关论文
共 45 条
  • [31] PET image reconstruction using Mumford-Shah regularization coupled with L1 data fitting
    Zhou, Jian
    Shu, Huazhong
    Xia, Ting
    Luo, Limin
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 1905 - 1908
  • [32] CRITICAL POINTS OF AMBROSIO-TORTORELLI CONVERGE TO CRITICAL POINTS OF MUMFORD-SHAH IN THE ONE-DIMENSIONAL DIRICHLET CASE
    Francfort, Gilles A.
    Le, Nam Q.
    Serfaty, Sylvia
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) : 576 - 598
  • [33] IMAGE SEGMENTATION BY VARIATIONAL-METHODS - MUMFORD AND SHAH FUNCTIONAL AND THE DISCRETE APPROXIMATIONS
    CHAMBOLLE, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) : 827 - 863
  • [34] INCREMENTAL UNKNOWNS IN FINITE-DIFFERENCES IN 3 SPACE DIMENSIONS
    CHEN, M
    MIRANVILLE, A
    TEMAM, R
    COMPUTATIONAL & APPLIED MATHEMATICS, 1995, 14 (03): : 219 - 252
  • [35] INCREMENTAL UNKNOWNS IN FINITE-DIFFERENCES - CONDITION NUMBER OF THE MATRIX
    CHEN, M
    TEMAM, R
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) : 432 - 455
  • [36] A Green's function formulation for finite-differences schemes
    Alvarez-Ramirez, Jose
    Valdes-Parada, Francisco J.
    Alvarez, Jesus
    Ochoa-Tapia, J. Alberto
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (12) : 3083 - 3091
  • [37] MUMFORD-SHAH-TV FUNCTIONAL WITH APPLICATION IN X-RAY INTERIOR TOMOGRAPHY
    Zhao, Zhenhua
    Zhu, Yining
    Yang, Jiansheng
    Jiang, Ming
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (02) : 331 - 348
  • [38] GPU Support for Automatic Generation of Finite-Differences Stencil Kernels
    Mickus Rodrigues, Vitor Hugo
    Cavalcante, Lucas
    Pereira, Maelso Bruno
    Luporini, Fabio
    Reguly, Istvan
    Gorman, Gerard
    de Souza, Samuel Xavier
    HIGH PERFORMANCE COMPUTING, CARLA 2019, 2020, 1087 : 230 - 244
  • [39] A finite-differences derivative-descent approach for estimating form error in precision-manufactured parts
    Gosavi, A
    Phatakwala, S
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 355 - 359
  • [40] COMPARISON OF RAY-THEORY SYNTHETIC SEISMOGRAMS WITH FINITE-DIFFERENCES IN 2D VELOCITY MODEL UNCONFORMITY
    Klimes, Ludek
    JOURNAL OF SEISMIC EXPLORATION, 2021, 30 (03): : 271 - 279