Mechanical Properties and Interlaminar Fracture Toughness of Glass-Fiber-Reinforced Epoxy Composites Embedded with Shape Memory Alloy Wires

被引:21
作者
Xu, Li-Dan [1 ]
Shi, Ming-Fang [1 ]
Sun, Xiao-Yu [1 ]
Wang, Zhen-Qing [1 ]
Yang, Bin [2 ]
机构
[1] Harbin Engn Univ Harbin, Coll Aerosp & Civil Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Composite laminates; Failure mechanism; Fracture toughness; Mechanical properties; Shape memory alloy; LOW-VELOCITY IMPACT; HYBRID COMPOSITE; MODE-I; BEHAVIOR; SIMULATION; INTERFACE; STRENGTH; BEAM;
D O I
10.1002/adem.201700646
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass-fiber-reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum-assisted resin infusion (VARI) processing and are subjected to static tensile and three-point-bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF(2)/SMA/GF(1)/SMA/GF(2)] and four SMA wires in the stacking sequence of [GF(4)/SMA/GF(2)/SMA/GF(4)] exhibit optimal performance. The flexural strength of the optimal four-SMA-wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode-I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF(4)/SMA/GF(2)/SMA/GF(4)] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates [J].
Al-Khudairi, O. ;
Hadavinia, H. ;
Waggott, A. ;
Lewis, E. ;
Little, C. .
MATERIALS & DESIGN, 2015, 66 :93-102
[2]  
[Anonymous], 2010, D79010 ASTM INT
[3]  
[Anonymous], 2014, D303914 ASTM INT
[4]  
[Anonymous], 2007, D5528 ASTM INT
[5]   Effect of superelastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly(butylene terephthalate) composites [J].
Aurrekoetxea, J. ;
Zurbitu, J. ;
Ortiz de Mendibil, I. ;
Agirregomezkorta, A. ;
Sanchez-Soto, M. ;
Sarrionandia, M. .
MATERIALS LETTERS, 2011, 65 (05) :863-865
[6]   Effect of phase on debond strength in shape memory alloy reinforced composites [J].
Barrie, Fatmata ;
Futch, David B. ;
Hsu, Derek H. D. ;
Manuel, Michele V. .
MATERIALS & DESIGN, 2014, 57 :98-102
[7]   Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils [J].
Beckermann, Gareth W. ;
Pickering, Kim L. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 72 :11-21
[8]   Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6,6 electrospun nanofibers [J].
Beylergil, Bertan ;
Tanoglu, Metin ;
Aktas, Engin .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (35)
[9]   Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading [J].
Daghash, Sherif M. ;
Ozbulut, Osman E. .
MATERIALS & DESIGN, 2016, 111 :504-512
[10]   Flexural and tensile moduli of unidirectional hybrid epoxy composites reinforced by S-2 glass and T700S carbon fibres [J].
Dong, Chensong ;
Davies, Ian J. .
MATERIALS & DESIGN, 2014, 54 :893-899