An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition

被引:962
作者
Li, Ke [1 ,2 ]
Deb, Kalyanmoy [2 ]
Zhang, Qingfu [1 ,3 ,4 ]
Kwong, Sam [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 5180057, Peoples R China
[4] Univ Essex, Sch Elect Engn & Comp Sci, Colchester CO4 3SQ, Essex, England
基金
中国国家自然科学基金;
关键词
Constrained optimization; decomposition; evolutionary computation; many-objective optimization; Pareto optimality; steady state; NONDOMINATED SORTING APPROACH; MULTIOBJECTIVE OPTIMIZATION; PARETO; DIVERSITY; SELECTION; CONVERGENCE; OPTIMALITY; PROXIMITY; BALANCE; MOEA/D;
D O I
10.1109/TEVC.2014.2373386
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Achieving balance between convergence and diversity is a key issue in evolutionary multiobjective optimization. Most existing methodologies, which have demonstrated their niche on various practical problems involving two and three objectives, face significant challenges in many-objective optimization. This paper suggests a unified paradigm, which combines dominance- and decomposition-based approaches, for many-objective optimization. Our major purpose is to exploit the merits of both dominance-and decomposition-based approaches to balance the convergence and diversity of the evolutionary process. The performance of our proposed method is validated and compared with four state-of-the-art algorithms on a number of unconstrained benchmark problems with up to 15 objectives. Empirical results fully demonstrate the superiority of our proposed method on all considered test instances. In addition, we extend this method to solve constrained problems having a large number of objectives. Compared to two other recently proposed constrained optimizers, our proposed method shows highly competitive performance on all the constrained optimization problems.
引用
收藏
页码:694 / 716
页数:23
相关论文
共 75 条
[21]   Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches [J].
Deb, Kalyanmoy ;
Miettinen, Kaisa ;
Chaudhuri, Shamik .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (06) :821-841
[22]  
Deb K, 2007, GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, P781
[23]   An Investigation on Preference Order - Ranking Scheme for Multi Objective Evolutionary Optimisation [J].
di Perro, Francesco ;
Khu, Soon-Thiam ;
Savic, Dragan A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (01) :17-45
[24]   A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems [J].
Durillo, Juan J. ;
Nebro, Antonio J. ;
Coello Coello, Carlos A. ;
Garcia-Nieto, Jose ;
Luna, Francisco ;
Alba, Enrique .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) :618-635
[25]  
Durillo JJ, 2009, LECT NOTES COMPUT SC, V5467, P183, DOI 10.1007/978-3-642-01020-0_18
[26]   A fuzzy definition of "optimality" for many-criteria optimization problems [J].
Farina, M ;
Amato, P .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2004, 34 (03) :315-326
[27]   Optimal Design of Water Distribution Systems Using Many-Objective Visual Analytics [J].
Fu, Guangtao ;
Kapelan, Zoran ;
Kasprzyk, Joseph R. ;
Reed, Patrick .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2013, 139 (06) :624-633
[28]   Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms [J].
He, Zhenan ;
Yen, Gary G. ;
Zhang, Jun .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (02) :269-285
[29]   Implicit Niching in a Learning Classifier System: Nature's Way [J].
Horn, Jeffrey ;
Goldberg, David E. ;
Deb, Kalyanmoy .
EVOLUTIONARY COMPUTATION, 1994, 2 (01) :37-66
[30]   A review of multiobjective test problems and a scalable test problem toolkit [J].
Huband, Simon ;
Hingston, Phil ;
Barone, Luigi ;
While, Lyndon .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (05) :477-506