BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPINSKI GASKET

被引:7
作者
Priyadarshi, Amit [1 ]
Sahu, Abhilash [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khas, New Delhi 110016, India
关键词
Sierpinski Gasket; p-Laplacian; Weak Solution; p-Energy; Euler Functional; NONLINEAR ELLIPTIC-EQUATIONS; FRACTAL SETS;
D O I
10.1142/S0218348X1850007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following boundary value problem involving the weak p-Laplacian: -Delta(p)u = lambda a(x)|u|(q-1)u + b(x)|u|(l-1)u in S\S-0; u = 0 on S-0, where S is the Sierpinski gasket in R-2, S-0 is its boundary, lambda > 0, p > 1, 0 < q < p - 1 < l and a, b : S -> R are bounded nonnegative functions. We will show the existence of at least two nontrivial weak solutions to the above problem for a certain range of lambda using the analysis of fibering maps on suitable subsets.
引用
收藏
页数:13
相关论文
共 21 条
[1]   Nehari manifold and existence of positive solutions to a class of quasilinear problems [J].
Alves, CO ;
El Hamidi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) :611-624
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]  
[Anonymous], 2014, FRACTAL GEOMETRY MAT
[5]  
Bisci GM, 2015, P AM MATH SOC, V143, P2959
[6]  
Brown KJ, 2009, DIFFER INTEGRAL EQU, V22, P1097
[7]  
Brown KJ., 2007, Int J Math Anal, V1, P557
[8]  
Brown T. F., 2007, ELECTRON J DIFFER EQ, V2007, P1
[9]  
Chen H, 2009, ACTA MATH SCI, V29, P232
[10]   Local superlinearity and sublinearity for indefinite semilinear elliptic problems [J].
De Figueiredo, DG ;
Gossez, JP ;
Ubilla, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :452-467