Active Zero-Shot Learning

被引:10
|
作者
Xie, Sihong [3 ]
Wang, Shaoxiong [2 ]
Yu, Philip S. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL USA
[2] Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China
[3] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA 18015 USA
来源
CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT | 2016年
关键词
D O I
10.1145/2983323.2983866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In multi-label classification in the big data age, the number of classes can be in thousands, and obtaining sufficient training data for each class is infeasible. Zero-shot learning aims at predicting a large number of unseen classes using only labeled data from a small set of classes and external knowledge about class relations. However, previous zero-shot learning models passively accept labeled data collected beforehand, relinquishing the opportunity to select the proper set of classes to inquire labeled data and optimize the performance of unseen class prediction. To resolve this issue, we propose an active class selection strategy to intelligently query labeled data for a parsimonious set of informative classes. We demonstrate two desirable probabilistic properties of the proposed method that can facilitate unseen classes prediction. Experiments on 4 text datasets demonstrate that the active zero-shot learning algorithm is superior to a wide spectrum of baselines. We indicate promising future directions at the end of this paper.
引用
收藏
页码:1889 / 1892
页数:4
相关论文
共 50 条
  • [41] Meta-Learning for Generalized Zero-Shot Learning
    Verma, Vinay Kumar
    Brahma, Dhanajit
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6062 - 6069
  • [42] Zero-shot Learning via Simultaneous Generating and Learning
    Yu, Hyeonwoo
    Lee, Beomhee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [44] Learning Attention as Disentangler for Compositional Zero-shot Learning
    Hao, Shaozhe
    Han, Kai
    Wong, Kwan-Yee K.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15315 - 15324
  • [45] Attributes learning network for generalized zero-shot learning
    Yun, Yu
    Wang, Sen
    Hou, Mingzhen
    Gao, Quanxue
    NEURAL NETWORKS, 2022, 150 : 112 - 118
  • [46] Learning Graph Embeddings for Compositional Zero-shot Learning
    Naeem, Muhammad Ferjad
    Xian, Yongqin
    Tombari, Federico
    Akata, Zeynep
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 953 - 962
  • [47] Learning Conditional Attributes for Compositional Zero-Shot Learning
    Wang, Qingsheng
    Liu, Lingqiao
    Jing, Chenchen
    Chen, Hao
    Liang, Guoqiang
    Wang, Peng
    Shen, Chunhua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11197 - 11206
  • [48] Learning a Deep Embedding Model for Zero-Shot Learning
    Zhang, Li
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3010 - 3019
  • [49] Integrative zero-shot learning for fruit recognition
    Tran-Anh, Dat
    Huu, Quynh Nguyen
    Bui-Quoc, Bao
    Hoang, Ngan Dao
    Quoc, Tao Ngo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 73191 - 73213
  • [50] Structure Fusion and Propagation for Zero-Shot Learning
    Lin, Guangfeng
    Chen, Yajun
    Zhao, Fan
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 465 - 477