Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications

被引:121
作者
Mandal, Biman B. [1 ]
Kundu, Subhas C. [1 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Kharagpur 721302, W Bengal, India
关键词
biomaterials; fibroin; nonmulberry silk; scaffolds; tissue engineering;
D O I
10.1002/mabi.200800113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes a new source for fabricating high-strength, non-bioengineered silk gland fibroin 3D scaffolds from Indian tropical tasar silkworm, Antheraea mylitta using SDS for dissolution. The scaffolds were fabricated by freeze drying at different prefreezing temperatures for pore size and porosity optimization. Superior mechanical properties with compressive strength in the range of 972 kPa were observed. The matrices were degraded by proteases within 28 d of incubation. Biocompatibility was assessed by feline fibroblast culture in vitro and confocal microscopy further confirmed adherence, spreading, and proliferation of primary dermal fibroblasts. Results indicate nonmulberry 3D silk gland fibroin protein as an inexpensive, high-strength, slow biodegradable, biocompatible, and alternative natural biomaterial.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 50 条
  • [21] Cetyl Trimethyl Ammonium Bromide Modified Montmorillonite-Doped Tasar Silk Fibroin/Polyvinyl Alcohol Blend 3D Nanowebs for Tissue Engineering Applications
    Batra, Radhika
    Purwar, Roli
    Kulanthaivel, Senthilguru
    Mishra, Prashant
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (11)
  • [22] Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering
    Foss, Cristina
    Merzari, Enrico
    Migliaresi, Claudio
    Motta, Antonella
    BIOMACROMOLECULES, 2013, 14 (01) : 38 - 47
  • [23] Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
    Hong, Heesun
    Seo, Ye Been
    Kim, Do Yeon
    Lee, Ji Seung
    Lee, Young Jin
    Lee, Hanna
    Ajiteru, Olatunji
    Sultan, Md Tipu
    Lee, Ok Joo
    Kim, Soon Hee
    Park, Chan Hum
    BIOMATERIALS, 2020, 232
  • [24] Extracted Silk Fibroin-Cellulose Acetate Nanofibrous Scaffolds for Tissue Engineering Applications
    Nundloll, Akash
    Goonoo, Nowsheen
    Bhaw-Luximon, Archana
    MACROMOLECULAR SYMPOSIA, 2023, 409 (01)
  • [25] 3D polymer scaffolds for tissue engineering
    Seunarine, K.
    Gadegaard, N.
    Tormen, M.
    O Meredith, D.
    O Riehle, M.
    Wilkinson, C. D. W.
    NANOMEDICINE, 2006, 1 (03) : 281 - 296
  • [26] Engineered silk fibroin protein 3D matrices for in vitro tumor model
    Talukdar, Sarmistha
    Mandal, Mahitosh
    Hutmacher, Dietmar W.
    Russell, Pamela J.
    Soekmadji, Carolina
    Kundu, Subhas C.
    BIOMATERIALS, 2011, 32 (08) : 2149 - 2159
  • [27] Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin
    Yang, Yuejiao
    Chen, Jie
    Migliaresi, Claudio
    Motta, Antonella
    BIOINSPIRED BIOMATERIALS: ADVANCES IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 1249 : 39 - 49
  • [28] Applications of nanotechnology in 3D printed tissue engineering scaffolds
    Laird, Noah Z.
    Acri, Timothy M.
    Chakka, Jaidev L.
    Quarterman, Juliana C.
    Malkawi, Walla, I
    Elangovan, Satheesh
    Salem, Aliasger K.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2021, 161 : 15 - 28
  • [29] Large 3D direct laser written scaffolds for tissue engineering applications
    Trautmann, Anika
    Rueth, Marieke
    Lemke, Horst-Dieter
    Walther, Thomas
    Hellmann, Ralf
    NANOPHOTONICS AUSTRALASIA 2017, 2017, 10456
  • [30] 3D Printing of Silk Fibroin for Biomedical Applications
    Wang, Qiusheng
    Han, Guocong
    Yan, Shuqin
    Zhang, Qiang
    MATERIALS, 2019, 12 (03)