Scanner invariant representations for diffusion MRI harmonization

被引:72
作者
Moyer, Daniel [1 ,2 ]
Steeg, Greg Ver [2 ]
Tax, Chantal M. W. [3 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Southern Calif, Imaging Genet Ctr, Keck Sch Med, Mark & Mary Stevens Inst Neuroimaging & Informat, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Informat Sci Inst, Marina Del Rey, CA USA
[3] Cardiff Univ, Brain Res Imaging Ctr CUBRIC, Cardiff, Wales
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院; 英国惠康基金;
关键词
diffusion MRI; harmonization; invariant representation; BRAIN; ACQUISITION; RELIABILITY;
D O I
10.1002/mrm.28243
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose In the present work, we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation. Theory and Methods Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data. Results To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context. Conclusions As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data.
引用
收藏
页码:2174 / 2189
页数:16
相关论文
共 53 条
  • [11] Danie M., 2018, ADV NEURAL INFORM PR, P9102
  • [12] Dhollander T., 2016, ISMRM WORKSH BREAK B, P5
  • [13] Harmonization of multi-site diffusion tensor imaging data
    Fortin, Jean-Philippe
    Parker, Drew
    Tunc, Birkan
    Watanabe, Takanori
    Elliott, Mark A.
    Ruparel, Kosha
    Roalf, David R.
    Satterthwaite, Theodore D.
    Gur, Ruben C.
    Gur, Raquel E.
    Schultz, Robert T.
    Verma, Ragini
    Shinohara, Russell T.
    [J]. NEUROIMAGE, 2017, 161 : 149 - 170
  • [14] Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions
    Giannelli, Marco
    Cosottini, Mirco
    Michelassi, Maria Chiara
    Lazzarotti, Guido
    Belmonte, Gina
    Bartolozzi, Carlo
    Lazzeri, Mauro
    [J]. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2010, 11 (01): : 176 - 190
  • [15] The minimal preprocessing pipelines for the Human Connectome Project
    Glasser, Matthew F.
    Sotiropoulos, Stamatios N.
    Wilson, J. Anthony
    Coalson, Timothy S.
    Fischl, Bruce
    Andersson, Jesper L.
    Xu, Junqian
    Jbabdi, Saad
    Webster, Matthew
    Polimeni, Jonathan R.
    Van Essen, David C.
    Jenkinson, Mark
    [J]. NEUROIMAGE, 2013, 80 : 105 - 124
  • [16] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [17] A longitudinal human phantom reliability study of multi-center T1-weighted, DTI, and resting state fMRI data
    Hawco, Colin
    Viviano, Joseph D.
    Chavez, Sofia
    Dickie, Erin W.
    Calarco, Navona
    Kochunov, Peter
    Argyelan, Miklos
    Turner, Jessica A.
    Malhotra, Anil K.
    Buchanan, Robert W.
    Voineskos, Aristotle N.
    [J]. PSYCHIATRY RESEARCH-NEUROIMAGING, 2018, 282 : 134 - 142
  • [18] Higgins I., 2016, P INT C LEARN REPR
  • [19] Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging
    Jensen, JH
    Helpern, JA
    Ramani, A
    Lu, HZ
    Kaczynski, K
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (06) : 1432 - 1440
  • [20] Modeling dendrite density from magnetic resonance diffusion measurements
    Jespersen, Sune N.
    Kroenke, Christopher D.
    Ostergaard, Leif
    Ackerman, Joseph J. H.
    Yablonskiy, Dmitriy A.
    [J]. NEUROIMAGE, 2007, 34 (04) : 1473 - 1486