Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity

被引:204
作者
Hu, Ming [1 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
关键词
Si/Ge superlattice nanowire; thermal conductivity; coherent phonon; thermoelectrics; MOLECULAR-DYNAMICS; SILICON NANOWIRES; THERMOELECTRIC PERFORMANCE; SEMICONDUCTOR NANOWIRES; TEMPERATURE-DEPENDENCE; GE; SI; GROWTH;
D O I
10.1021/nl301971k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease hi thermal conductivity at room temperature, compared to. pristine single crystalline Si nanowires. We also identified. two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport Our results show trends for superlattice nanowire design for efficient thermoelectrics.
引用
收藏
页码:5487 / 5494
页数:8
相关论文
共 56 条
[1]   Phonon and carrier spectrum modification in thermoelectric quantum dot superlattices [J].
Balandin, AA ;
Lazarenkova, OL ;
Casian, A .
XXI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '02, 2002, :302-305
[2]   Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices [J].
Balandin, AA ;
Lazarenkova, OL .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :415-417
[3]   Interfacial phonon scattering in semiconductor nanowires by molecular-dynamics simulation [J].
Becker, Brian ;
Schelling, Patrick K. ;
Phillpot, Simon R. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (12)
[4]   Thermal conductivity of symmetrically strained Si/Ge superlattices [J].
Borca-Tasciuc, T ;
Liu, WL ;
Liu, JL ;
Zeng, TF ;
Song, DW ;
Moore, CD ;
Chen, G ;
Wang, KL ;
Goorsky, MS ;
Radetic, T ;
Gronsky, R ;
Koga, T ;
Dresselhaus, MS .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (03) :199-206
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J].
Caylor, JC ;
Coonley, K ;
Stuart, J ;
Colpitts, T ;
Venkatasubramanian, R .
APPLIED PHYSICS LETTERS, 2005, 87 (02)
[7]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[8]   Atomistic Design of High Thermoelectricity on Si/Ge Superlattice Nanowires [J].
Chen, Xin ;
Wang, Ziwei ;
Ma, Yanming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42) :20696-20702
[9]   High Thermoelectric Performance of Ge/Si Core-Shell Nanowires: First-Principles Prediction [J].
Chen, Xin ;
Wang, Yanchao ;
Ma, Yanming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9096-9100
[10]   Minimum superlattice thermal conductivity from molecular dynamics [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Ni, ZH ;
Chen, MH .
PHYSICAL REVIEW B, 2005, 72 (17)