A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning

被引:24
作者
Moghadas-Dastjerdi, Hadi [1 ,2 ,3 ,4 ]
Sha-E-Tallat, Hira Rahman [2 ,5 ]
Sannachi, Lakshmanan [1 ,2 ,3 ,4 ]
Sadeghi-Naini, Ali [1 ,2 ,3 ,6 ]
Czarnota, Gregory J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[2] Sunnybrook Hlth Sci Ctr, Sunnybrook Res Inst, Phys Sci Platform, Toronto, ON, Canada
[3] Sunnybrook Hlth Sci Ctr, Odette Canc Ctr, Dept Radiat Oncol, Toronto, ON, Canada
[4] Univ Toronto, Dept Radiat Oncol, Toronto, ON, Canada
[5] Univ Waterloo, Fac Engn, Waterloo, ON, Canada
[6] York Univ, Lassonde Sch Engn, Dept Elect Engn & Comp Sci, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
RENAL-CELL CARCINOMA; TEXTURE ANALYSIS; PREOPERATIVE CHEMOTHERAPY; F-18-FDG PET; CRITERIA; SMOTE; MRI; DIFFERENTIATION; CLASSIFICATION; ANGIOMYOLIPOMA;
D O I
10.1038/s41598-020-67823-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Response to Neoadjuvant chemotherapy (NAC) has demonstrated a high correlation to survival in locally advanced breast cancer (LABC) patients. An early prediction of responsiveness to NAC could facilitate treatment adjustments on an individual patient basis that would be expected to improve treatment outcomes and patient survival. This study investigated, for the first time, the efficacy of quantitative computed tomography (qCT) parametric imaging to characterize intra-tumour heterogeneity and its application in predicting tumour response to NAC in LABC patients. Textural analyses were performed on CT images acquired from 72 patients before the start of chemotherapy to determine quantitative features of intra-tumour heterogeneity. The best feature subset for response prediction was selected through a sequential feature selection with bootstrap 0.632+area under the receiver operating characteristic (ROC) curve (AUC0.632+) as a performance criterion. Several classifiers were evaluated for response prediction using the selected feature subset. Amongst the applied classifiers an Adaboost decision tree provided the best results with cross-validated AUC0.632+, accuracy, sensitivity and specificity of 0.89, 84%, 80% and 88%, respectively. The promising results obtained in this study demonstrate the potential of the proposed biomarkers to be used as predictors of LABC tumour response to NAC prior to the start of treatment.
引用
收藏
页数:11
相关论文
共 74 条
  • [1] Texture analysis in assessment and prediction of chemotherapy response in breast cancer
    Ahmed, Arfan
    Gibbs, Peter
    Pickles, Martin
    Turnbull, Lindsay
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (01) : 89 - 101
  • [2] Breast cancer survival in the US and Europe: a CONCORD high-resolution study
    Allemani, Claudia
    Sant, Milena
    Weir, Hannah K.
    Richardson, Lisa C.
    Baili, Paolo
    Storm, Hans
    Siesling, Sabine
    Torrella-Ramos, Ana
    Voogd, Adri C.
    Aareleid, Tiiu
    Ardanaz, Eva
    Berrino, Franco
    Bielska-Lasota, Magdalena
    Bolick, Susan
    Cirilli, Claudia
    Colonna, Marc
    Contiero, Paolo
    Cress, Rosemary
    Crocetti, Emanuele
    Fulton, John P.
    Grosclaude, Pascale
    Hakulinen, Timo
    Isabel Izarzugaza, M.
    Malmstrom, Per
    Peignaux, Karin
    Primic-Zakelj, Maja
    Rachtan, Jadwiga
    Diba, Chakameh Safaei
    Sanchez, Maria-Jose
    Schymura, Maria J.
    Shen, Tiefu
    Traina, Adele
    Tryggvadottir, Laufey
    Tumino, Rosario
    Velten, Michel
    Vercelli, Marina
    Wolf, Holly J.
    Woronoff, Anne-Sophie
    Wu, Xiaocheng
    Coleman, Michel P.
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2013, 132 (05) : 1170 - 1181
  • [3] Dedicated Breast CT: Screening Technique of the Future
    Aminololama-Shakeri S.
    Hargreaves J.B.
    Boone J.M.
    Lindfors K.K.
    [J]. Current Breast Cancer Reports, 2016, 8 (4) : 242 - 247
  • [4] Microstructural models for diffusion MRI in breast cancer and surrounding stroma: an ex vivo study
    Bailey, Colleen
    Siow, Bernard
    Panagiotaki, Eleftheria
    Hipwell, John H.
    Mertzanidou, Thomy
    Owen, Julie
    Gazinska, Patrycja
    Pinder, Sarah E.
    Alexander, Daniel C.
    Hawkes, David J.
    [J]. NMR IN BIOMEDICINE, 2017, 30 (02)
  • [5] Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations
    Bedair, Reem
    Priest, Andrew N.
    Patterson, Andrew J.
    McLean, Mary A.
    Graves, Martin J.
    Manavaki, Roido
    Gill, Andrew B.
    Abeyakoon, Oshaani
    Griffiths, John R.
    Gilbert, Fiona J.
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (07) : 2726 - 2736
  • [6] Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality
    Best, Alan C.
    Meng, Jiangfeng
    Lynch, Anne M.
    Bozic, Carmen M.
    Miller, David
    Grunwald, Gary K.
    Lynch, David A.
    [J]. RADIOLOGY, 2008, 246 (03) : 935 - 940
  • [7] Breiman L., 2001, Mach. Learn., V45, P5
  • [8] MASTECTOMY FOLLOWING PREOPERATIVE CHEMOTHERAPY - STRICT OPERATIVE CRITERIA CONTROL OPERATIVE MORBIDITY
    BROADWATER, JR
    EDWARDS, MJ
    KUGLEN, C
    HORTOBAGYI, GN
    AMES, FC
    BALCH, CM
    [J]. ANNALS OF SURGERY, 1991, 213 (02) : 126 - 129
  • [9] Pathologic Complete Response Rates in Young Women With BRCA1-Positive Breast Cancers After Neoadjuvant Chemotherapy
    Byrski, Tomasz
    Gronwald, Jacek
    Huzarski, Tomasz
    Grzybowska, Ewa
    Budryk, Magdalena
    Stawicka, Malgorzata
    Mierzwa, Tomasz
    Szwiec, Marek
    Wisniowski, Rafal
    Siolek, Monika
    Dent, Rebecca
    Lubinski, Jan
    Narod, Steven
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (03) : 375 - 379
  • [10] Canadian Cancer Society, 2018, CAN CANC STAT 2018