Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series

被引:111
作者
de Castro Filho, Hugo Crisostomo [1 ]
de Carvalho Junior, Osmar Abilio [1 ]
Ferreira de Carvalho, Osmar Luiz [2 ]
de Bem, Pablo Pozzobon [1 ]
de Moura, Rebeca dos Santos [1 ]
de Albuquerque, Anesmar Olino [1 ]
Silva, Cristiano Rosa [1 ]
Guimaraes Ferreira, Pedro Henrique [2 ]
Guimaraes, Renato Fontes [1 ]
Trancoso Gomes, Roberto Arnaldo [1 ]
机构
[1] Univ Brasilia, Dept Geog, Campus Univ Darcy Ribeiro,Asa Norte, BR-70910900 Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Engn Elect, Campus Univ Darcy Ribeiro,Asa Norte, BR-70910900 Brasilia, DF, Brazil
关键词
monitoring crops; multitemporal image; deep learning; machine learning; recurrent neural network; MAPPING PADDY RICE; SYNTHETIC-APERTURE RADAR; MEKONG RIVER DELTA; CULTIVATION CONTRIBUTE; RANDOM FOREST; NDVI DATA; SAR; FIELDS; MODIS; CLASSIFICATION;
D O I
10.3390/rs12162655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Synthetic Aperture Radar (SAR) time series allows describing the rice phenological cycle by the backscattering time signature. Therefore, the advent of the Copernicus Sentinel-1 program expands studies of radar data (C-band) for rice monitoring at regional scales, due to the high temporal resolution and free data distribution. Recurrent Neural Network (RNN) model has reached state-of-the-art in the pattern recognition of time-sequenced data, obtaining a significant advantage at crop classification on the remote sensing images. One of the most used approaches in the RNN model is the Long Short-Term Memory (LSTM) model and its improvements, such as Bidirectional LSTM (Bi-LSTM). Bi-LSTM models are more effective as their output depends on the previous and the next segment, in contrast to the unidirectional LSTM models. The present research aims to map rice crops from Sentinel-1 time series (band C) using LSTM and Bi-LSTM models in West Rio Grande do Sul (Brazil). We compared the results with traditional Machine Learning techniques: Support Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors (k-NN), and Normal Bayes (NB). The developed methodology can be subdivided into the following steps: (a) acquisition of the Sentinel time series over two years; (b) data pre-processing and minimizing noise from 3D spatial-temporal filters and smoothing with Savitzky-Golay filter; (c) time series classification procedures; (d) accuracy analysis and comparison among the methods. The results show high overall accuracy and Kappa (>97% for all methods and metrics). Bi-LSTM was the best model, presenting statistical differences in the McNemar test with a significance of 0.05. However, LSTM and Traditional Machine Learning models also achieved high accuracy values. The study establishes an adequate methodology for mapping the rice crops in West Rio Grande do Sul.
引用
收藏
页数:25
相关论文
共 139 条
[81]   Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An Giang Province [J].
Minh, Huynh Vuong Thu ;
Avtar, Ram ;
Mohan, Geetha ;
Misra, Prakhar ;
Kurasaki, Masaaki .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (05)
[82]  
Moreira A, 2019, SCI AGR, V76, P24, DOI [10.1590/1678-992X-2017-0173, 10.1590/1678-992x-2017-0173]
[83]   Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review [J].
Mosleh, Mostafa K. ;
Hassan, Quazi K. ;
Chowdhury, Ehsan H. .
SENSORS, 2015, 15 (01) :769-791
[84]   Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery [J].
Mou, Lichao ;
Bruzzone, Lorenzo ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :924-935
[85]   Support vector machines in remote sensing: A review [J].
Mountrakis, Giorgos ;
Im, Jungho ;
Ogole, Caesar .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (03) :247-259
[86]   Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project [J].
Nelson, Andrew ;
Setiyono, Tri ;
Rala, Arnel B. ;
Quicho, Emma D. ;
Raviz, Jeny V. ;
Abonete, Prosperidad J. ;
Maunahan, Aileen A. ;
Garcia, Cornelia A. ;
Bhatti, Hannah Zarah M. ;
Villano, Lorena S. ;
Thongbai, Pongmanee ;
Holecz, Francesco ;
Barbieri, Massimo ;
Collivignarelli, Francesco ;
Gatti, Luca ;
Quilang, Eduardo Jimmy P. ;
Mabalay, Mary Rose O. ;
Mabalot, Pristine E. ;
Barroga, Mabel I. ;
Bacong, Alfie P. ;
Detoito, Norlyn T. ;
Berja, Glorie Belle ;
Varquez, Frenciso ;
Wahyunto ;
Kuntjoro, Dwi ;
Murdiyati, Retno ;
Pazhanivelan, Sellaperumal ;
Kannan, Pandian ;
Mary, Petchimuthu Christy Nirmala ;
Subramanian, Elangovan ;
Rakwatin, Preesan ;
Intrman, Amornrat ;
Setapayak, Thana ;
Lertna, Sommai ;
Vo Quang Minh ;
Vo Quoc Tuan ;
Trinh Hoang Duong ;
Nguyen Huu Quyen ;
Duong Van Kham ;
Hin, Sarith ;
Veasna, Touch ;
Yadav, Manoj ;
Chin, Chharom ;
Nguyen Hong Ninh .
REMOTE SENSING, 2014, 6 (11) :10773-10812
[87]   Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines [J].
Nguyen-Thanh Son ;
Chen, Chi-Farn ;
Chen, Cheng-Ru ;
Vo-Quang Minh .
GEOCARTO INTERNATIONAL, 2018, 33 (06) :587-601
[88]  
Nuarsa I.W., 2011, J AGR SCI, V3, P54, DOI DOI 10.5539/JAS.V3N1P54
[89]   Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia [J].
Nuarsa, I. Wayan ;
Nishio, Fumihiko ;
Hongo, Chiharu ;
Mahardika, I. Gede .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (17) :5402-5417
[90]   Estimation of rice-planted area in the tropical zone using a combination of optical and microwave satellite sensor data [J].
Okamoto, K ;
Kawashima, H .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (05) :1045-1048