Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle

被引:1
作者
Bakhshalizadeh, Ali [1 ]
Zangeneh, Hamid R. Z. [1 ]
Kazemi, Rasool [2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Univ Kashan, Fac Math, Kashan 8731753153, Iran
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 11期
关键词
Melnikov function; limit cycles; heteroclinic loop; Chebyshev property; LOOP;
D O I
10.1142/S0218127416501807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Lienard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.
引用
收藏
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2006, J SHANGHAI NORM U NA
[2]  
Arnold V.I., 1988, Encyclopaedia Math. Sci., V1, P148
[3]   Limit cycle bifurcation by perturbing a cuspidal loop of order 2 in a Hamiltonian system [J].
Atabaigi, Ali ;
Zangeneh, Hamid R. Z. ;
Kazemi, Rasool .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1945-1958
[4]  
Christopher C., 2007, ADV COURSES MATH
[5]  
Dumortier F., 2000, QUAL THEORY DYN SYST, V1, P163
[6]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[7]  
Han M., 2012, INT J BIFURCAT CHAOS, V22
[8]  
Han M., 2012, Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles
[9]  
HAN MA, 1994, SCI CHINA SER A, V37, P1325
[10]   On Hopf cyclicity of planar systems [J].
Han, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :404-422