Performance Validation of Electric Vehicle's Battery Management System under state of charge estimation for lithium-ion Battery

被引:0
|
作者
Khalid, Mamoona [1 ]
Sheikh, Shehzar Shahzad [1 ]
Janjua, Abdul Kashif [1 ]
Khalid, Hassan Abdullah [1 ]
机构
[1] NUST, USPCASE, Islamabad, Pakistan
来源
2018 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONIC AND ELECTRICAL ENGINEERING (ICE CUBE) | 2018年
关键词
Electric Vehicles (EVs); Battery Management System (BMS); lithium-ion batteries; State of Charge (SOC); Extended Kalman filter (EKF); coulomb counting; PACKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Electric Vehicles (EVs) have gained substantial attention in the recent years, since they are an efficient, sustainable and zero-carbon emitting means of transportation as compared to the conventional fossil-fuel powered vehicles. As EVs are becoming popular, the use of Lithium-ion (Li-Ion) batteries is exponentially increasing due to its good charge/discharge performance, high energy and current density and optimum power support. For safe operation of battery, precise estimation of the State of Charge (SOC) is necessary. SOC determines the residual charge accumulated in the battery and how further it can operate under specific conditions. This paper uses the Thevenin-equivalent circuit theory to model the transient behaviour of the Li-Ion battery and the SOC is evaluated using Coulomb counting and Extended Kalman Filter (EKF) methods. First, the battery is mathematically modelled and then the estimation is done via Coulomb counting and EKF in MATLAB/Simulink. A comparison of these two methods indicate that the SOC evaluation of the battery using EKF is more precise than Coulomb counting. The results show that the error is reduced by 1% when implemented via EKF.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Jin, Yuzhen
    Su, Chenglong
    Luo, Shichang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (04) : 1003 - 1011
  • [32] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [33] Real Time State of Charge Estimation of Lithium-Ion Battery Considering Temperature
    Barcellona, Simone
    Codecasa, Lorenzo
    Colnago, Silvia
    D'Amore, Dario
    2024 30TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS, THERMINIC 2024, 2024,
  • [34] State-of-Charge Estimation for Lithium-ion Battery Using AUKF and LSSVM
    Meng, Jinhao
    Luo, Guangzhao
    Gao, Fei
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [35] State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model
    Yang, Shichun
    Deng, Cheng
    Zhang, Yulong
    He, Yongling
    ENERGIES, 2017, 10 (10):
  • [36] Review on Estimation Methods for State of Charge of Lithium-ion Battery and Their Application Scenarios
    Wang Y.
    Zuo X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (14): : 193 - 207
  • [37] State of Charge Estimation for Lithium-Ion Battery Pack With Selected Representative Cells
    Liu, Xingtao
    Xia, Wenlong
    Li, Siyuan
    Lin, Mingqiang
    Wu, Ji
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 4107 - 4118
  • [38] State of Charge (SOC) Estimation for Lithium-Ion Battery Cell Using Extended Kalman Filter
    Ucuncu, Murat
    Altindag, Arda
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 503 - 509
  • [39] A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle
    Esfandyari, M. J.
    Esfahanian, V.
    Yazdi, M. R. Hairi
    Nehzati, H.
    Shekoofa, O.
    ENERGY, 2019, 176 (505-520) : 505 - 520
  • [40] A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation
    Wang, Dongqing
    Yang, Yan
    Gu, Tianyu
    JOURNAL OF ENERGY STORAGE, 2023, 62