A Double Adaptive Algorithm for Multidimensional Integration on Multicore Based HPC Systems

被引:21
作者
Laccetti, Giuliano
Lapegna, Marco [1 ]
Mele, Valeria
Romano, Diego [2 ]
Murli, Almerico [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat, SPACI, I-80126 Naples, Italy
[2] ICAR CNR, I-80131 Naples, Italy
关键词
Multicomputer system; Multicore node; Hierarchical environment; Multidimensional integration; Parallel adaptive algorithm; QUADRATURE;
D O I
10.1007/s10766-011-0191-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, a parallel double adaptive algorithm for the computation of a multidimensional integral on multicore based multicomputer systems is described. This new algorithm is the revision of a procedure developed by one of the present authors for multicomputer systems, with the aim to introduce features for an efficient implementation in multicore based hierarchical environments. Two different adaptive strategies have been combined together in the algorithm: a first procedure is responsible for load balancing among the system nodes and a second one is responsible for coordinating the cores within a single node. The performance is analyzed and experimental results on a Blade Server with 8 nodes and 2 quad-core CPUs per node have been achieved.
引用
收藏
页码:397 / 409
页数:13
相关论文
共 10 条
[1]   PRACTICAL ERROR ESTIMATION IN ADAPTIVE MULTIDIMENSIONAL QUADRATURE ROUTINES [J].
BERNTSEN, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (03) :327-340
[2]   A class of parallel tiled linear algebra algorithms for multicore architectures [J].
Buttari, Alfredo ;
Langou, Julien ;
Kurzak, Jakub ;
Dongarra, Jack .
PARALLEL COMPUTING, 2009, 35 (01) :38-53
[3]   MONOMIAL CUBATURE RULES SINCE STROUD - A COMPILATION [J].
COOLS, R ;
RABINOWITZ, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (03) :309-326
[4]   Practical aspects and experiences - Scalability and load balancing in adaptive algorithms for multidimensional integration [J].
DApuzzo, M ;
Lapegna, M ;
Murli, A .
PARALLEL COMPUTING, 1997, 23 (08) :1199-1210
[5]  
Dongarra J., 2007, CTWATCH Q, V3, P3
[6]   The International Exascale Software Project roadmap [J].
Dongarra, Jack ;
Beckman, Pete ;
Moore, Terry ;
Aerts, Patrick ;
Aloisio, Giovanni ;
Andre, Jean-Claude ;
Barkai, David ;
Berthou, Jean-Yves ;
Boku, Taisuke ;
Braunschweig, Bertrand ;
Cappello, Franck ;
Chapman, Barbara ;
Chi, Xuebin ;
Choudhary, Alok ;
Dosanjh, Sudip ;
Dunning, Thom ;
Fiore, Sandro ;
Geist, Al ;
Gropp, Bill ;
Harrison, Robert ;
Hereld, Mark ;
Heroux, Michael ;
Hoisie, Adolfy ;
Hotta, Koh ;
Jin, Zhong ;
Ishikawa, Yutaka ;
Johnson, Fred ;
Kale, Sanjay ;
Kenway, Richard ;
Keyes, David ;
Kramer, Bill ;
Labarta, Jesus ;
Lichnewsky, Alain ;
Lippert, Thomas ;
Lucas, Bob ;
Maccabe, Barney ;
Matsuoka, Satoshi ;
Messina, Paul ;
Michielse, Peter ;
Mohr, Bernd ;
Mueller, Matthias S. ;
Nagel, Wolfgang E. ;
Nakashima, Hiroshi ;
Papka, Michael E. ;
Reed, Dan ;
Sato, Mitsuhisa ;
Seidel, Ed ;
Shalf, John ;
Skinner, David ;
Snir, Marc .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2011, 25 (01) :3-60
[7]  
Genz Alan, 1987, Numerical Integration, P337, DOI [DOI 10.1007/978-94-009-3889-233, DOI 10.1007/978-94-009-3889-2_33]
[8]   REEVALUATING AMDAHL LAW [J].
GUSTAFSON, JL .
COMMUNICATIONS OF THE ACM, 1988, 31 (05) :532-533
[9]  
Krommer A. R., 1998, COMPUTATIONAL INTEGR
[10]  
Laccetti G, 1999, LECT NOTES COMPUT SC, V1685, P1144