Towards fuzzy interval orders

被引:0
作者
Diaz, S. [1 ]
Montes, S. [1 ]
De Baets, B. [1 ]
机构
[1] Univ Oviedo, Dept Stat & OR, E-33071 Oviedo, Spain
来源
COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL | 2008年 / 1卷
关键词
additive fuzzy preference structure; interval order; Ferrers property; biorder; transitivity; completeness;
D O I
10.1142/9789812799470_0034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For crisp relations the concept of interval order can be written in different equivalent ways and it satisfies that its strict preference relation is transitive and the associated large preference relation is complete. In this contribution we study the previous implications for each of the (non-equivalent for fuzzy relations) possible definitions of fuzzy interval order.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 17 条
[1]   Weak and strong fuzzy interval orders [J].
DeBaets, B ;
VandeWalle, B .
FUZZY SETS AND SYSTEMS, 1996, 79 (02) :213-225
[2]   FUZZY PREFERENCE STRUCTURES WITHOUT INCOMPARABILITY [J].
DEBAETS, B ;
VANDEWALLE, B ;
KERRE, E .
FUZZY SETS AND SYSTEMS, 1995, 76 (03) :333-348
[3]  
DEBAETS B, P RELMICS6
[4]  
Díaz S, 2003, LECT NOTES ARTIF INT, V2715, P269
[5]  
DIAZ S, P IPMU 2008
[6]   Additive decomposition of fuzzy pre-orders [J].
Diaz, Susana ;
De Baets, Bernard ;
Montes, Susana .
FUZZY SETS AND SYSTEMS, 2007, 158 (08) :830-842
[7]   Transitivity bounds in additive fuzzy preference structures [J].
Diaz, Susana ;
Montes, Susana ;
De Baets, Bernard .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (02) :275-286
[8]  
Fodor J. C., 1994, Fuzzy Preference Modelling and Multicriteria Decision Support, V14
[9]   TRACES OF FUZZY BINARY RELATIONS [J].
FODOR, JC .
FUZZY SETS AND SYSTEMS, 1992, 50 (03) :331-341
[10]   New family of triangular norms via contrapositive symmetrization of residuated implications [J].
Jenei, S .
FUZZY SETS AND SYSTEMS, 2000, 110 (02) :157-174