Wronskian solution of general nonlinear evolution equations and Young diagram prove

被引:6
作者
Cheng Jian-Jun [1 ]
Zhang Hong-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
nonlinear evolution equations; Wronskian determinant solution; Young diagram; irreducible character; SYMBOLIC COMPUTATION; SOLITON;
D O I
10.7498/aps.62.200504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give indirect methods constructed Wronskian solution of a general nonlinear evolution equations. Under the properties of the computing of Young diagram we have proved the proposition of this paper and discuss the relationship between the permutation group character and Young diagram expressions coefficient.
引用
收藏
页数:10
相关论文
共 19 条
[11]  
Ohta Y, 2003, J NONLINEAR MATH PHY, V10, P143
[12]  
Qu C Z, 1996, THEOR PHYS, V25, P369
[13]  
Rogers C., 1982, Backlund Transformations and their Applications
[14]   Symbolic computation in engineering: Application to a breaking soliton equation [J].
Tian, B ;
Zhao, KY ;
Gao, YT .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (10-11) :1081-1083
[15]   The Bogoyavlenskii-Schiff hierarchy and integrable equations in (2+1) dimensions [J].
Toda, K ;
Yu, SJ ;
Fukuyama, T .
REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) :247-254
[16]   Symbolic computation and new soliton-like solutions of the 1+2D Calogero-Bogoyavlenskii-Schif equation [J].
Yan, ZY .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (02) :89-97
[17]   Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation [J].
Yan, ZY ;
Zhang, HQ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) :1439-1444
[18]  
Zhang H Q, 1998, CHINESE PHYS, V7, P649
[19]   Geometrical explanation and application of some algebraic direct methods [J].
Zhang Shan-Qing .
ACTA PHYSICA SINICA, 2008, 57 (03) :1335-1338