Wronskian solution of general nonlinear evolution equations and Young diagram prove

被引:6
作者
Cheng Jian-Jun [1 ]
Zhang Hong-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
nonlinear evolution equations; Wronskian determinant solution; Young diagram; irreducible character; SYMBOLIC COMPUTATION; SOLITON;
D O I
10.7498/aps.62.200504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give indirect methods constructed Wronskian solution of a general nonlinear evolution equations. Under the properties of the computing of Young diagram we have proved the proposition of this paper and discuss the relationship between the permutation group character and Young diagram expressions coefficient.
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Bogoyavlenski O. I., 1990, MATH USSR IZV+, V34, P245, DOI [10.1070/IM1990v034n02ABEH000628, DOI 10.1070/IM1990V034N02ABEH000628]
[3]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .1. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1976, 32 (02) :201-242
[4]   Two new applications of the modified extended Tanh-function method [J].
Elwakil, SA ;
El-Labany, SK ;
Zahran, MA ;
Sabry, R .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2003, 58 (01) :39-44
[5]  
Estvez PG, 2000, J PHYS A, V33, P2131
[6]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[7]   A (2+1)-DIMENSIONAL GENERALIZATION OF THE AKNS SHALLOW-WATER WAVE-EQUATION [J].
GILSON, CR ;
NIMMO, JJC ;
WILLOX, R .
PHYSICS LETTERS A, 1993, 180 (4-5) :337-345
[10]  
Matveev V.B., 1991, Darboux Transformations and Solitons