Chaos and its impact on the foundations of statistical mechanics

被引:0
作者
Morriss, GP
Rondoni, L
机构
来源
AUSTRALIAN JOURNAL OF PHYSICS | 1996年 / 49卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we present a brief derivation of the periodic orbit expansion for simple dynamical systems, and then we apply it to the study of a classical statistical mechanical model, the Lorentz gas, both at equilibrium and in a nonequilibrium steady state. The results are compared with those obtained through standard molecular dynamics simulations, and they are found to be in good agreement. The form of the average using the periodic orbit expansion suggests the definition of a new dynamical partition function, which we test numerically. An analytic formula is obtained for the Lyapunov numbers of periodic orbits for the nonequilibrium Lorentz gas. Using this formula and other numerical techniques we study the nonequilibrium Lorentz gas as a dynamical system and obtain an estimate of the upper bound on the external field for which the system remains ergodic.
引用
收藏
页码:51 / 77
页数:27
相关论文
共 27 条
[11]  
GASPARD P, 1989, J CHEM PHYS, V90, P2242, DOI 10.1063/1.456018
[12]   EXACT QUANTIZATION OF THE SCATTERING FROM A CLASSICALLY CHAOTIC REPELLOR [J].
GASPARD, P ;
RICE, SA .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (04) :2255-2262
[13]  
GASPARD P, 1989, J CHEM PHYS, V90, P2225, DOI 10.1063/1.456017
[14]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 37 (05) :1711-1724
[15]   PERIODIC-ORBITS AND A CORRELATION-FUNCTION FOR THE SEMICLASSICAL DENSITY OF STATES [J].
HANNAY, JH ;
DEALMEIDA, AMO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3429-3440
[16]   BREAKDOWN OF ERGODIC BEHAVIOR IN THE LORENTZ GAS [J].
LLOYD, J ;
RONDONI, L ;
MORRISS, GP .
PHYSICAL REVIEW E, 1994, 50 (05) :3416-3421
[17]  
LLOYD JP, 1995, CHAOS, V5, P3
[18]  
Lorent HA, 1905, P K AKAD WET-AMSTERD, V7, P438
[19]   DIFFUSION IN A PERIODIC LORENTZ GAS [J].
MACHTA, J ;
ZWANZIG, R .
PHYSICAL REVIEW LETTERS, 1983, 50 (25) :1959-1962
[20]   DIFFUSION IN A PERIODIC LORENTZ GAS [J].
MORAN, B ;
HOOVER, WG ;
BESTIALE, S .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) :709-726