Graphene-Based Thermopile for Thermal Imaging Applications

被引:89
作者
Hsu, Allen L. [1 ]
Herring, Patrick K. [2 ,4 ]
Gabor, Nathaniel M. [5 ]
Ha, Sungjae [1 ]
Shin, Yong Cheol [3 ]
Song, Yi [1 ]
Chin, Matthew [6 ]
Dubey, Madan [6 ]
Chandrakasan, Anantha P. [1 ]
Kong, Jing [1 ]
Jarillo-Herrero, Pablo [2 ]
Palacios, Tomas [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[6] Army Res Lab, Adelphi, MD 20783 USA
关键词
Graphene; thermal imaging; infrared; detectors; thermopile; microelectromechanical Systems; PLASMONICS; TERAHERTZ; PHOTORESPONSE; PHOTODETECTOR; CONDUCTIVITY;
D O I
10.1021/acs.nanolett.5b01755
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we leverage graphene's unique tunable Seebeck coefficient for the demonstration of a graphene-based thermal imaging system. By integrating graphene based photothermo-electric detectors with micromachined silicon nitride membranes, we are able to achieve room temperature responsivities on the order of similar to 7-9 V/W (at lambda = 10.6 mu m), with a time constant of similar to 23 ms. The large responsivities, due to the combination of thermal isolation and broadband infrared absorption from the underlying SiN membrane, have enabled detection as well as stand-off imaging of an incoherent blackbody target (300-500 K). By comparing the fundamental achievable performance of these graphene-based thermopiles with standard thermocouple materials, we extrapolate that graphene's high carrier mobility can enable improved performances with respect to two main figures of merit for infrared detectors: detectivity (>8 X 10(8) cm Hz(1/2)W(-1)) and noise equivalent temperature difference (<100 mK). Furthermore, even average graphene carrier mobility (<1000 cm(2) V-1 s(-1)) is still sufficient to detect the emitted thermal radiation from a human target.
引用
收藏
页码:7211 / 7216
页数:6
相关论文
共 50 条
[31]   Towards a Graphene-Based Low Intensity Photon Counting Photodetector [J].
Williams, Jamie O. D. ;
Alexander-Webber, Jack A. ;
Lapington, Jon S. ;
Roy, Mervyn ;
Hutchinson, Ian B. ;
Sagade, Abhay A. ;
Martin, Marie-Blandine ;
Braeuninger-Weimer, Philipp ;
Cabrero-Vilatela, Andrea ;
Wang, Ruizhi ;
De Luca, Andrea ;
Udrea, Florin ;
Hofmann, Stephan .
SENSORS, 2016, 16 (09)
[32]   Thermal conductivity of graphene-based polymer nanocomposites [J].
Huang, Xingyi ;
Zhi, Chunyi ;
Lin, Ying ;
Bao, Hua ;
Wu, Guangning ;
Jiang, Pingkai ;
Mai, Yiu-Wing .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2020, 142
[33]   Modeling thermal conductivity of graphene-based nanocomposites [J].
Sandu, Titus ;
Boldeiu, George ;
Voicu, Rodica ;
Gologanu, Mihai .
2017 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 40TH EDITION, 2017, :209-212
[34]   Graphene-Based Materials for Stem Cell Applications [J].
Kim, Tae-Hyung ;
Lee, Taek ;
El-Said, Waleed A. ;
Choi, Jeong-Woo .
MATERIALS, 2015, 8 (12) :8674-8690
[35]   Applications of Graphene-Based Nanomaterials in Environmental Analysis [J].
Plastiras, Orfeas-Evangelos ;
Deliyanni, Eleni ;
Samanidou, Victoria .
APPLIED SCIENCES-BASEL, 2021, 11 (07)
[36]   Novel graphene-based OPFET for optoelectronic applications [J].
Gaitonde, Jaya V. ;
Lohani, Rajesh B. .
MATERIALS TODAY-PROCEEDINGS, 2022, 49 :2090-2095
[37]   Graphene-based materials for environmental applications: a review [J].
V. Karthik ;
P. Selvakumar ;
P. Senthil Kumar ;
Dai-Viet N. Vo ;
M. Gokulakrishnan ;
P. Keerthana ;
V. Tamil Elakkiya ;
R. Rajeswari .
Environmental Chemistry Letters, 2021, 19 :3631-3644
[38]   Graphene-based materials for environmental applications: a review [J].
Karthik, V ;
Selvakumar, P. ;
Kumar, P. Senthil ;
Vo, Dai-Viet N. ;
Gokulakrishnan, M. ;
Keerthana, P. ;
Elakkiya, V. Tamil ;
Rajeswari, R. .
ENVIRONMENTAL CHEMISTRY LETTERS, 2021, 19 (05) :3631-3644
[39]   An Overview of the Applications of Graphene-Based Materials in Supercapacitors [J].
Huang, Yi ;
Liang, Jiajie ;
Chen, Yongsheng .
SMALL, 2012, 8 (12) :1805-1834
[40]   Advances on graphene-based nanomaterials for biomedical applications [J].
Qu, Ying ;
He, Feng ;
Yu, Chenggong ;
Liang, Xuewu ;
Liang, Dong ;
Ma, Long ;
Zhang, Qiuqiong ;
Lv, Jiahui ;
Wu, Jingde .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 90 :764-780