A parallelepiped multispectral image classifier using genetic algorithms

被引:0
|
作者
Xiang, M [1 ]
Hung, CC [1 ]
Pham, M [1 ]
Kuo, BC [1 ]
Coleman, T [1 ]
机构
[1] So Polytech State Univ, Sch Comp & Software Engn, Marietta, GA 30060 USA
来源
IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings | 2005年
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The parallelepiped classifier is one of the widely used supervised classification algorithms for multispectral images. The threshold of each spectral (class) signature is defined in the training data, which is to determine whether a given pixel within the class or not. To avoid involving the analyst for the training data selection, this paper is to study whether the threshold of parallelepiped classifier can be automatically determined by using natural evolution process - genetic algorithms (GAs). In other words, our goal is to create an unsupervised multispectral parallelepiped classifier with the help of genetic algorithms. In this algorithm, we also use a new approach to estimate the initial range. Preliminary experimental results with different parameters for genetic algorithms and a comparison with the supervised parallelepiped classifier are provided.
引用
收藏
页码:482 / 485
页数:4
相关论文
共 50 条
  • [41] Pointwise digital image correlation using genetic algorithms
    Jin, H
    Bruck, HA
    EXPERIMENTAL TECHNIQUES, 2005, 29 (01) : 36 - 39
  • [42] Implementation of image segmentation and reconstruction using genetic algorithms
    Chandra, AIC
    Guruprasad, M
    Dev, PS
    Samuel, RDS
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 970 - 975
  • [43] Medical image registration using parallel genetic algorithms
    Fan, Y
    Jiang, TZ
    Evans, DJ
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2002, 2279 : 304 - 314
  • [44] Interval Type-2 Fuzzy Classifier Design Using Genetic Algorithms
    Pimenta, Adinovam H. M.
    Camargo, Helosia A.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [45] COARSE-TO-FINE CLASSIFIER ENSEMBLE SELECTION USING CLUSTERING AND GENETIC ALGORITHMS
    Kim, Young-Won
    Oh, Il-Seok
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (06) : 1083 - 1106
  • [46] Tuning a Multiple Classifier System for Side Effect Discovery using Genetic Algorithms
    Reps, Jenna M.
    Aickelin, Uwe
    Garibaldi, Jonathan M.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 910 - 917
  • [47] Vote-based classifier selection for biomedical NER using genetic algorithms
    Dimililer, Nazife
    Varoglu, Ekrem
    Altincay, Hakan
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2007, 4478 : 202 - 209
  • [48] Quantitative comparison of multispectral image-sharpening algorithms
    Patterson, TJ
    Haxton, R
    Bullock, ME
    Ulinski, SB
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY II, 1996, 2758 : 168 - 179
  • [49] Multispectral image segmentation utilizing constrained clustering approach and CGT classifier
    Vahitha Rahman M.H.
    Vanitha M.
    Multimedia Tools and Applications, 2025, 84 (10) : 7775 - 7775
  • [50] PAN-sharpening of very high resolution multispectral images using genetic algorithms
    Garzelli, A.
    Nencini, F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (15) : 3273 - 3292