A parallelepiped multispectral image classifier using genetic algorithms

被引:0
|
作者
Xiang, M [1 ]
Hung, CC [1 ]
Pham, M [1 ]
Kuo, BC [1 ]
Coleman, T [1 ]
机构
[1] So Polytech State Univ, Sch Comp & Software Engn, Marietta, GA 30060 USA
来源
IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings | 2005年
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The parallelepiped classifier is one of the widely used supervised classification algorithms for multispectral images. The threshold of each spectral (class) signature is defined in the training data, which is to determine whether a given pixel within the class or not. To avoid involving the analyst for the training data selection, this paper is to study whether the threshold of parallelepiped classifier can be automatically determined by using natural evolution process - genetic algorithms (GAs). In other words, our goal is to create an unsupervised multispectral parallelepiped classifier with the help of genetic algorithms. In this algorithm, we also use a new approach to estimate the initial range. Preliminary experimental results with different parameters for genetic algorithms and a comparison with the supervised parallelepiped classifier are provided.
引用
收藏
页码:482 / 485
页数:4
相关论文
共 50 条
  • [1] Multispectral image classification using rough set theory and the comparison with parallelepiped classifier
    Hung, Chih-Cheng
    Purnawan, Hendri
    Kuo, Bor-Chen
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2052 - +
  • [2] Classifier Fusion Framework using Genetic Algorithms
    Tamminedi, Tejaswi
    Ganapathy, Priya
    Zhang, Lei
    Yadegar, Jacob
    2011 IEEE 22ND INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2011, : 2224 - 2228
  • [3] Fuzzy classifier design using genetic algorithms
    Zhou, Enwang
    Khotanzad, Alireza
    PATTERN RECOGNITION, 2007, 40 (12) : 3401 - 3414
  • [4] HYBRID CLASSIFIER USING PARALLELEPIPED AND BAYESIAN TECHNIQUES
    ADDINGTON, JD
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1975, 41 (06): : 771 - 771
  • [5] A fuzzy classifier using genetic algorithms for biological data
    Diederich, J
    Fortuner, R
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 680 - 684
  • [6] Classifier ensemble selection using hybrid genetic algorithms
    Kim, Young-Won
    Oh, Il-Seok
    PATTERN RECOGNITION LETTERS, 2008, 29 (06) : 796 - 802
  • [7] Optimisation of multiple classifier systems using genetic algorithms
    Sirlantzis, K
    Fairhurst, MC
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 1094 - 1097
  • [8] Fuzzy classifier using genetic algorithms for biological data
    Univ of California, Davis, United States
    Annu Conf North Am Fuzzy Inf Process Soc NAFIPS, (680-684):
  • [9] Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
    Hakan Altinçay
    Pattern Analysis and Applications, 2004, 7 : 285 - 295
  • [10] Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
    Altinçay, H
    PATTERN ANALYSIS AND APPLICATIONS, 2004, 7 (03) : 285 - 295