The singular harmonic oscillator revisited

被引:0
作者
Pimentel, Douglas R. M. [1 ]
de Castro, Antonio S. [1 ]
机构
[1] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2013年 / 35卷 / 03期
关键词
harmonic oscillator; singular potential; degeneracy; collapse to the center; TRANSFORM APPROACH; BOUND-STATES; EQUATIONS;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The one-dimensional Schrodinger equation with the singular harmonic oscillator is investigated. The Hermiticity of the operators related to observable physical quantities is used as a criterion to show that the attractive or repulsive singular oscillator exhibits an infinite number of acceptable solutions provided the parameter responsible for the singularity is greater than a certain critical value, in disagreement with the literature. The problem for the whole line exhibits a two-fold degeneracy in the case of the singular oscillator, and the intrusion of additional solutions in the case of a nonsingular oscillator. Additionally, it is shown that the solution of the singular oscillator can not be obtained from the nonsingular oscillator via perturbation theory.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
[Anonymous], 1990, EXACT SOLUTION RELAT, DOI DOI 10.1007/978-94-009-1854-2
[3]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[5]   EXACT SOLUTION OF A TIME-DEPENDENT QUANTAL HARMONIC OSCILLATOR WITH A SINGULAR PERTURBATION [J].
CAMIZ, P ;
GERARDI, A ;
MARCHIORO, C ;
PRESUTTI, E ;
SCACCIATELLI, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (10) :2040-+
[6]   An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy [J].
Cardoso, T. R. ;
Castro, L. B. ;
de Castro, A. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
[7]   SINGULAR POTENTIALS [J].
CASE, KM .
PHYSICAL REVIEW, 1950, 80 (05) :797-806
[8]  
Choi JR, 2004, J KOREAN PHYS SOC, V44, P223
[9]  
Constantinescu F., 1971, PROBLEMS QUANTUM MEC
[10]   Bound states of the Dirac equation for a class of effective quadratic plus inversely quadratic potentials [J].
de Castro, AS .
ANNALS OF PHYSICS, 2004, 311 (01) :170-181