No violation of the Leibniz rule. No fractional derivative

被引:234
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
关键词
Fractional derivative; Leibniz rule;
D O I
10.1016/j.cnsns.2013.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We demonstrate that a violation of the Leibniz rule is a characteristic property of derivatives of non-integer orders. We prove that all fractional derivatives D-alpha, which satisfy the Leibniz rule D(alpha()fg) = (D(alpha)f) g + f(D(alpha)g), should have the integer order alpha = 1, i.e. fractional derivatives of non-integer orders cannot satisfy the Leibniz rule. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:2945 / 2948
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2007, ADVANCES IN FRACTION
[2]  
Carpinteri A, 1997, FRACTALS AND FRACTIO
[3]  
Hilfer R., 2000, APPLICATIONS OF FRAC
[4]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[5]   Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2009, 22 (03) :378-385
[6]  
Kilbas A., 2006, N HOLLAND MATH STUDI
[7]  
Klafter J., 2011, FRACTIONAL DYNAMICS
[8]  
Liouville J, 1832, J de l'Ecole Polytech Paris, V13, P71
[9]  
Luo ACJ, 2011, NONLINEAR PHYS SCI, P1
[10]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926