Synchronization of delayed systems in the presence of delay time modulation

被引:26
作者
Kye, WH [1 ]
Choi, M
Kim, MW
Lee, SY
Rim, S
Kim, CM
Park, YJ
机构
[1] Pai Chai Univ, Natl Creat Res Initiat Ctr Controlling Opt Chaos, Taejon 302735, South Korea
[2] Sogang Univ, Dept Phys, Seoul 121742, South Korea
关键词
synchronization; time-delayed system;
D O I
10.1016/j.physleta.2004.01.046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate synchronization in the presence of delay time modulation for application to communication. We have observed that the robust synchronization is established by a common delay signal and its threshold is presented using Lyapunov exponents analysis. The influence of the delay time modulation in chaotic oscillators is also discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:338 / 343
页数:6
相关论文
共 28 条
  • [1] AFRAIMOVICH VS, 1986, RADIOPHYS QUANT EL, V29, P747
  • [2] Arecchi FT, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.046237
  • [3] Reconstruction of time-delay systems from chaotic time series
    Bezruchko, BP
    Karavaev, AS
    Ponomarenko, VI
    Prokhorov, MD
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 6 - 056216
  • [4] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [5] Reconstruction of systems with delayed feedback:: II.: Application
    Bünner, MJ
    Ciofini, M
    Giaquinta, A
    Hegger, R
    Kantz, H
    Meucci, R
    Politi, A
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2000, 10 (02) : 177 - 187
  • [6] Reconstruction of systems with delayed feedback:: I.: Theory
    Bünner, MJ
    Ciofini, M
    Giaquinta, A
    Hegger, R
    Kantz, H
    Meucci, R
    Politi, A
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2000, 10 (02) : 165 - 176
  • [7] Recovery of the time-evolution equation of time-delay systems from time series
    Bunner, MJ
    Meyer, T
    Kittel, A
    Parisi, J
    [J]. PHYSICAL REVIEW E, 1997, 56 (05): : 5083 - 5089
  • [8] FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
  • [9] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [10] Time delayed chaotic systems and their synchronization
    He, R
    Vaidya, PG
    [J]. PHYSICAL REVIEW E, 1999, 59 (04): : 4048 - 4051