Biharmonic PNMC submanifolds in spheres

被引:41
作者
Balmus, Adina [1 ]
Montaldo, Stefano [2 ]
Oniciuc, Cezar [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, RO-700506 Iasi, Romania
[2] Univ Cagliari, Dipartimento Matemat & Informat, IT-09124 Cagliari, Italy
来源
ARKIV FOR MATEMATIK | 2013年 / 51卷 / 02期
关键词
MEAN-CURVATURE; HYPERSURFACES; SURFACES; IMMERSIONS;
D O I
10.1007/s11512-012-0169-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain several rigidity results for biharmonic submanifolds in with parallel normalized mean curvature vector fields. We classify biharmonic submanifolds in with parallel normalized mean curvature vector fields and with at most two distinct principal curvatures. In particular, we determine all biharmonic surfaces with parallel normalized mean curvature vector fields in . Then we investigate, for (not necessarily compact) proper-biharmonic submanifolds in , their type in the sense of B.-Y. Chen. We prove that (i) a proper-biharmonic submanifold in is of 1-type or 2-type if and only if it has constant mean curvature f=1 or fa(0,1), respectively; and (ii) there are no proper-biharmonic 3-type submanifolds with parallel normalized mean curvature vector fields in .
引用
收藏
页码:197 / 221
页数:25
相关论文
共 31 条
  • [1] [Anonymous], PREPRINT
  • [2] [Anonymous], 1971, J. Differ. Geom, DOI DOI 10.4310/JDG/1214429997
  • [3] [Anonymous], 2003, THESIS
  • [4] [Anonymous], 1996, Soochow J. Math.
  • [5] [Anonymous], B SOC MATH BELG B
  • [6] Classification results for biharmonic submanifolds in spheres
    Balmus, A.
    Montaldo, S.
    Oniciuc, C.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) : 201 - 220
  • [7] Biharmonic submanifolds with parallel mean curvature vector field in spheres
    Balmus, A.
    Oniciuc, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 619 - 630
  • [8] Biharmonic hypersurfaces in 4-dimensional space forms
    Balmus, Adina
    Montaldo, Stefano
    Oniciuc, Cezar
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) : 1696 - 1705
  • [9] BIHARMONIC SURFACES OF S4
    Balmus, Adina
    Oniciuc, Cezar
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (02) : 339 - 345
  • [10] Biharmonic submanifolds of S3
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) : 867 - 876