A new relaxed HSS preconditioner for saddle point problems

被引:17
作者
Salkuyeh, Davod Khojasteh [1 ]
Masoudi, Mohsen [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
基金
美国国家科学基金会;
关键词
Saddle point problems; HSS preconditioner; Preconditioning; Krylov subspace method; GMRES; BLOCK TRIANGULAR PRECONDITIONERS; DIMENSIONAL SPLIT PRECONDITIONER; INDEFINITE LINEAR-SYSTEMS; NAVIER-STOKES EQUATIONS; SSOR PRECONDITIONERS; MATRICES;
D O I
10.1007/s11075-016-0171-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a preconditioner for saddle point problems. The proposed preconditioner is extracted from a stationary iterative method which is convergent under a mild condition. Some properties of the preconditioner as well as the eigenvalues distribution of the preconditioned matrix are presented. The preconditioned system is solved by a Krylov subspace method like restarted GMRES. Finally, some numerical experiments on test problems arisen from finite element discretization of the Stokes problem are given to show the effectiveness of the preconditioner.
引用
收藏
页码:781 / 795
页数:15
相关论文
共 32 条
[1]  
[Anonymous], 2005, SIAM J SCI COMPUT
[2]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[3]   On parameterized inexact Uzawa methods for generalized saddle point problems [J].
Bai, Zhong-Zhi ;
Wang, Zeng-Qi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2900-2932
[4]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/dr1017, 10.1093/imanum/drl017]
[5]  
Bai ZZ, 2006, MATH COMPUT, V76, P287
[6]   CONSTRAINT PRECONDITIONERS FOR SYMMETRIC INDEFINITE MATRICES [J].
Bai, Zhong-Zhi ;
Ng, Michael K. ;
Wang, Zeng-Qi .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :410-433
[7]  
Bai ZZ, 2006, MATH COMPUT, V75, P791, DOI 10.1090/S0025-5718-05-01801-6
[8]   On generalized successive overrelaxation methods for augmented linear systems [J].
Bai, ZZ ;
Parlett, BN ;
Wang, ZQ .
NUMERISCHE MATHEMATIK, 2005, 102 (01) :1-38
[9]   Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Lu, LZ ;
Yin, JF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :844-863
[10]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32