Statistical Convolutional Neural Network for Land-Cover Classification From SAR Images

被引:22
作者
Liu, Xinlong [1 ]
He, Chu [1 ,2 ]
Zhang, Qingyi [1 ]
Liao, Mingsheng [2 ,3 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Radar polarimetry; Synthetic aperture radar; Statistical analysis; Convolutional neural nets; Optimization; Remote sensing; Convolutional neural network (CNN); feature statistics (FS); mid-level primitive feature; synthetic aperture radar (SAR);
D O I
10.1109/LGRS.2019.2949789
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Synthetic aperture radar (SAR) images inherently present random and complex spatial patterns, which makes the land-cover classification from SAR images a challenging task. A convolutional neural network (CNN) has been applied to the land-cover classification. However, the statistical properties of an SAR image have not yet been explicitly considered by CNN for feature extraction. To address this problem, this letter presents a statistical CNN (SCNN) for land-cover classification from SAR images, which enables the representation of learning and statistical analysis to be implemented with a unified framework. In the proposed SCNN, the distribution of mid-level primitive features, extracted by representation learning, is characterized by their first- and second-order statistics. These statistics are used to fit the land-cover representations, which encode the statistical properties of the SAR image in the feature space. Experiments on the TerraSAR-X data demonstrate that the SCNN is effective and efficient for the land-cover classification from SAR images.
引用
收藏
页码:1548 / 1552
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2014, Comput. Sci.
[2]  
[Anonymous], 2016, Deep Learning
[3]   PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network [J].
Chen, Si-Wei ;
Tao, Chen-Song .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) :627-631
[4]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[5]   SAR-SIFT: A SIFT-Like Algorithm for SAR Images [J].
Dellinger, Flora ;
Delon, Julie ;
Gousseau, Yann ;
Michel, Julien ;
Tupin, Florence .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01) :453-466
[6]  
DOBSON MC, 1995, REMOTE SENS ENVIRON, V51, P199, DOI 10.1016/0034-4257(94)00075-X
[7]   Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons [J].
He, Chu ;
Li, Shuang ;
Liao, Zixian ;
Liao, Mingsheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (08) :4576-4590
[8]  
He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
[9]  
JAO JK, 1984, IEEE T ANTENN PROPAG, V32, P1049
[10]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678