Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data

被引:41
作者
Belur Nagaraj, Sunil [1 ]
Pena, Michelle J. [1 ]
Ju, Wenjun [2 ]
Heerspink, Hiddo L. [1 ,3 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Pharm & Pharmacol, De Brug 1D-1-019, NL-9700AD Groningen, Netherlands
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] George Inst Global Hlth, Sydney, NSW, Australia
关键词
clinical trial; cohort study; diabetes complications; diabetic nephropathy; type; 2; diabetes; TYPE-2; OUTCOMES;
D O I
10.1111/dom.14178
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim To predict end-stage renal disease (ESRD) in patients with type 2 diabetes by using machine-learning models with multiple baseline demographic and clinical characteristics. Materials and methods In total, 11 789 patients with type 2 diabetes and nephropathy from three clinical trials, RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE (n = 8561), were used in this study. Eighteen baseline demographic and clinical characteristics were used as predictors to train machine-learning models to predict ESRD (doubling of serum creatinine and/or ESRD). We used the area under the receiver operator curve (AUC) to assess the prediction performance of models and compared this with traditional Cox proportional hazard regression and kidney failure risk equation models. Results The feed forward neural network model predicted ESRD with an AUC of 0.82 (0.76-0.87), 0.81 (0.75-0.86) and 0.84 (0.79-0.90) in the RENAAL, IDNT and ALTITUDE trials, respectively. The feed forward neural network model selected urinary albumin to creatinine ratio, serum albumin, uric acid and serum creatinine as important predictors and obtained a state-of-the-art performance for predicting long-term ESRD. Conclusions Despite large inter-patient variability, non-linear machine-learning models can be used to predict long-term ESRD in patients with type 2 diabetes and nephropathy using baseline demographic and clinical characteristics. The proposed method has the potential to create accurate and multiple outcome prediction automated models to identify high-risk patients who could benefit from therapy in clinical practice.
引用
收藏
页码:2479 / 2486
页数:8
相关论文
共 22 条
  • [1] Nearest neighbor imputation algorithms: a critical evaluation
    Beretta, Lorenzo
    Santaniello, Alessandro
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
  • [2] Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy
    Brenner, BM
    Cooper, ME
    de Zeeuw, D
    Keane, WF
    Mitch, WE
    Parving, HH
    Remuzzi, G
    Snapinn, SM
    Zhang, ZX
    Shahinfar, S
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (12) : 861 - 869
  • [3] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [4] Dagliati Arianna, 2018, J Diabetes Sci Technol, V12, P295, DOI 10.1177/1932296817706375
  • [5] Calibration drift in regression and machine learning models for acute kidney injury
    Davis, Sharon E.
    Lasko, Thomas A.
    Chen, Guanhua
    Siew, Edward D.
    Matheny, Michael E.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (06) : 1052 - 1061
  • [6] Evaluating risk prediction models for adults with heart failure: A systematic literature review
    Di Tanna, Gian Luca
    Wirtz, Heidi
    Burrows, Karen L.
    Globe, Gary
    [J]. PLOS ONE, 2020, 15 (01):
  • [7] Diabetes and end-stage renal disease; a review article on new concepts
    Ghaderian, Seyed Bahman
    Hayati, Fatemeh
    Shayanpour, Shokouh
    Mousavi, Seyed Seifollah Beladi
    [J]. JOURNAL OF RENAL INJURY PREVENTION, 2015, 4 (02): : 28 - 33
  • [8] Performance of GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Statistical Simulation
    Greene, Tom
    Ying, Jian
    Vonesh, Edward F.
    Tighiouart, Hocine
    Levey, Andrew S.
    Coresh, Josef
    Herrick, Jennifer S.
    Imai, Enyu
    Jafar, Tazeen H.
    Maes, Bart D.
    Perrone, Ronald D.
    del Vecchio, Lucia
    Wetzels, Jack F. M.
    Heerspink, Hiddo J. L.
    Inker, Lesley A.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (09): : 1756 - 1769
  • [9] Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials
    Heerspink, Hiddoj L.
    Greene, Tom
    Tighiouart, Hocine
    Gansevoort, Ron T.
    Coresh, Josef
    Simon, Andrew L.
    Chan, Tak Mao
    Hou, Fan Fan
    Lewis, Julia B.
    Locatelli, Francesco
    Praga, Manuel
    Schena, Francesco Paolo
    Levey, Andrew S.
    Inker, Lesley A.
    Schrier, Robert W.
    Estacio, Raymond O.
    Perkovic, Vlado
    Parving, Hans-Henrik
    Carlo, Manno
    Zucchelli, Pietro
    Brenner, Barry M.
    Barret, Brendan
    Kamper, Anne-Lise
    Strandgaard, Svend
    Rodby, Roger A.
    Rohde, Richard D.
    Lewis, Edmund
    Wanner, Christoph
    von Eynatten, Maximilian
    Katafuchi, Ritsuko
    de Jong, Paul E.
    van Essen, G. G.
    Xie, Di
    Perrone, Ronald D.
    Abebe, Kaleab Z.
    Li, Philip
    Leung, C. B.
    Szeto, C. C.
    Chow, K. M.
    Del Vecchio, Lucia
    Andrulli, Simeone
    Pozzi, Claudio
    Maes, Bart
    Dwyer, Jamie
    Lachin, John M.
    Goicoechea, Marian
    Verde, Eduardo
    Caravaca, Fernando
    Gutierrez, Eduardo
    Sevillano, Angel
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2019, 7 (02) : 128 - 139
  • [10] The distance function effect on k-nearest neighbor classification for medical datasets
    Hu, Li-Yu
    Huang, Min-Wei
    Ke, Shih-Wen
    Tsai, Chih-Fong
    [J]. SPRINGERPLUS, 2016, 5