Estrogen activates rapid signaling in the brain:: Role of estrogen receptor α and estrogen receptor β in neurons and glia

被引:86
作者
Mhyre, AJ
Dorsa, DM
机构
[1] Oregon Hlth & Sci Univ, Dept Physiol & Pharmacol, Portland, OR 97239 USA
[2] Univ Washington, Sch Med, Dept Pharmacol, Seattle, WA 98195 USA
关键词
17; beta-estradiol; astrocyte; C6; neuroprotection; MAPK; CRE;
D O I
10.1016/j.neuroscience.2005.10.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The aging process is known to coincide. with a decline in circulating sex hormone levels in both men and women. Due to an increase in the average lifespan, a growing number of post-menopausal women are now receiving hormone therapy for extended periods of time. Recent findings of the Women's Health Initiative, however, have called into question the benefits of long-term hormone therapy for treating symptoms of menopause. The results of this study are still being evaluated, but it is clear that a better understanding of the molecular effects of estradiol is needed in order to develop new estrogenic compounds that activate specific mechanisms but lack adverse side effects. Traditionally, the effects of estradiol treatment have been ascribed to changes in gene expression, namely transcription at estrogen response elements. This review focuses on emerging information that estradiol can also activate a repertoire of membrane-initiated signaling pathways and that these rapid signaling events lead to functional changes at the cellular level. The various types of cells in the brain can respond differently to estradiol treatment based on the signaling properties of the cell, as well as which receptor, estrogen receptor a and/or estrogen receptor 13, is expressed. Taken together, these findings suggest that the estradiol-induced activation of membrane-initiated signaling pathways occurs in a cell-type specific manner and can differentially influence how the cells respond to various insults. (C) 2005 Published by Elsevier Ltd on behalf of IBRO.
引用
收藏
页码:851 / 858
页数:8
相关论文
共 59 条
[1]   MODULATION OF TRANSCRIPTIONAL ACTIVATION BY LIGAND-DEPENDENT PHOSPHORYLATION OF THE HUMAN ESTROGEN RECEPTOR-A/B REGION [J].
ALI, S ;
METZGER, D ;
BORNERT, JM ;
CHAMBON, P .
EMBO JOURNAL, 1993, 12 (03) :1153-1160
[2]   PHOSPHORYLATION OF THE HUMAN ESTROGEN-RECEPTOR BY MITOGEN-ACTIVATED PROTEIN-KINASE AND CASEIN KINASE-II - CONSEQUENCE ON DNA-BINDING [J].
ARNOLD, SF ;
OBOURN, JD ;
JAFFE, H ;
NOTIDES, AC .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 55 (02) :163-172
[3]   ESTROGEN ACTION VIA THE CAMP SIGNALING PATHWAY - STIMULATION OF ADENYLATE-CYCLASE AND CAMP-REGULATED GENE-TRANSCRIPTION [J].
ARONICA, SM ;
KRAUS, WL ;
KATZENELLENBOGEN, BS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8517-8521
[4]   Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor β [J].
Baker, AE ;
Brautigam, VM ;
Watters, JJ .
ENDOCRINOLOGY, 2004, 145 (11) :5021-5032
[5]   Oxidative nerve cell death in Alzheimer's disease and stroke: Antioxidants as neuroprotective compounds [J].
Behl, C ;
Moosmann, B .
BIOLOGICAL CHEMISTRY, 2002, 383 (3-4) :521-536
[6]   17-BETA ESTRADIOL PROTECTS NEURONS FROM OXIDATIVE STRESS-INDUCED CELL-DEATH IN-VITRO [J].
BEHL, C ;
WIDMANN, M ;
TRAPP, T ;
HOLSBOER, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 216 (02) :473-482
[7]  
Beyer C, 2000, J NEUROSCI RES, V59, P107, DOI 10.1002/(SICI)1097-4547(20000101)59:1<107::AID-JNR13>3.3.CO
[8]  
2-N
[9]   Mechanisms of estrogen receptor signaling:: Convergence of genomic and nongenomic actions on target genes [J].
Björnström, L ;
Sjöberg, M .
MOLECULAR ENDOCRINOLOGY, 2005, 19 (04) :833-842
[10]   Antiinflammatory effects of estrogen on microglial activation [J].
Bruce-Keller, AJ ;
Keeling, JL ;
Keller, JN ;
Huang, FF ;
Camondola, S ;
Mattson, MP .
ENDOCRINOLOGY, 2000, 141 (10) :3646-3656