Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions

被引:23
作者
Tomovski, Zivorad [1 ]
Sandev, Trifce [2 ]
机构
[1] St Cyril & Methodius Univ, Inst Math, Fac Nat Sci & Math, Skopje 1000, Macedonia
[2] Radiat Safety Directorate, Skopje 1020, Macedonia
关键词
Fractional diffusion equation; Mittag-Leffler function; Generalized integral operator; Sturm-Liouville problem; ANOMALOUS DIFFUSION; LINEAR-SYSTEMS; WAVE-EQUATION; MEMORY KERNEL; CALCULUS; VOLTAMMETRY; EVOLUTION; DISCRETE;
D O I
10.1007/s11071-012-0710-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We give an analytical treatment of a time fractional diffusion equation with Caputo time-fractional derivative in a bounded domain with different boundary conditions. We use the Fourier method of separation of variables and Laplace transform method. The solution is obtained in terms of the Mittag-Leffler-type functions and complete set of eigenfunctions of the Sturm-Liouville problem. Such problems can be used in the context of anomalous diffusion in complex media, as well as for modeling voltammetric experiment in limiting diffusion space.
引用
收藏
页码:671 / 683
页数:13
相关论文
共 66 条
[1]   Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :57-68
[2]  
Agarwal RP, 2009, GEORGIAN MATH J, V16, P401
[3]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[4]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[5]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[6]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[7]  
[Anonymous], MATH PHYS EQUATIONS
[8]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[9]   SQUARE-WAVE VOLTAMMETRY IN A THIN-LAYER CELL [J].
AOKI, K ;
OSTERYOUNG, J .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1988, 240 (1-2) :45-51
[10]  
Caputo M., 1969, Elasticita e dissipazione