On approximate derivations

被引:87
作者
Badora, R [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2006年 / 9卷 / 01期
关键词
derivation; stability; superstability;
D O I
10.7153/mia-09-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(1) be a subalgebra of a Banach algebra A and let f : A(1) --> A satisfies parallel to f(x + y) -f(x) -f(y)parallel to <= delta and parallel to f(x . y) - x . f(y) - f(x) . y parallel to <= epsilon, for all x, y is an element of A(1) and for some constants delta, epsilon >= 0. Then we prove that there exists a unique derivation d: A(1) --> A such that parallel to f(x) - d(x)parallel to <= delta, x is an element of A(1) and x . (f(y) - d(y)) = 0, x, y is an element of A(1). Moreover, we also prove the Rassias type stability result for derivations.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 9 条
[1]  
Czerwik S, 2003, STABILITY FUNCTIONAL
[2]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[3]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables
[4]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[5]   ON THE HYERS-ULAM STABILITY OF PSI-ADDITIVE MAPPINGS [J].
ISAC, G ;
RASSIAS, TM .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (02) :131-137
[6]  
JUNG SM, 2001, ULAM HYERS RASIAS ST
[7]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[8]   THE FUNCTIONAL-EQUATION OF MULTIPLICATIVE DERIVATION IS SUPERSTABLE ON STANDARD OPERATOR-ALGEBRAS [J].
SEMRL, P .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 18 (01) :118-122
[9]  
Ulam S. M., 1960, A Collection of Mathematical Problems