The influence of bend-twist coupling on the shear buckling response of thin laminated composite plates

被引:22
作者
Loughlan, J [1 ]
机构
[1] Cranfield Univ, Coll Aeronaut, Struct & Mat Technol Grp, Cranfield MK43 0AL, Beds, England
关键词
bend-twist coupling; shear buckling; laminated composite plates; stiffened panels; finite strip method;
D O I
10.1016/S0263-8231(99)00009-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The finite strip method of analysis has been used in this paper to examine the effect of bend-twist coupling on the shear buckling behaviour of laminated composite constructions. The distorted nodal lines of the shear buckling mode and its complex deformation state in general are readily accounted for in the analysis procedure through the multi-term nature of the finite strip buckling displacement field and the appropriate level of structural modelling. The degree of bend-twist coupling in the laminated composite plates is varied by changing the level of anisotropy in the plies and by altering the lay-up configuration of the plies in the laminated stack. Symmetric laminates of a balanced and unbalanced nature are given consideration. It is shown that, for a given degree of anisotropy in the plies of a laminate and for a given laminate thickness, the stacking sequence of the plies significantly alters the degree of bend-twist coupling. The shear buckling performance of composite plates having the same dimensions and being made from the same material are therefore shown in the paper to be quite different. The preclusion of the bend-twist coupling coefficients in the solution procedure of the finite strip method allows the sheer buckling orthotropic solution to be determined. Comparisons between the coupled and orthotropic solutions are shown in the paper to be markedly different. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 50 条
[31]   The influence of boundary conditions on the shear buckling behaviour of thin corrugated plates [J].
Turner, SJ ;
VanErp, GM ;
Yuen, SW .
ADVANCES IN STEEL STRUCTURES, VOLS 1 AND 2, 1996, :709-714
[32]   An n-th order shear deformation theory for buckling analysis of laminated composite plates [J].
Xiang, Song ;
Wang, Ji ;
Lu, Chun ;
Zhao, Wei-Ping .
MECHANICS AND ARCHITECTURAL DESIGN, 2017, :102-106
[33]   Buckling of partially-compressed laminated composite plates [J].
Huang, Sixin ;
Qiao, Pizhong .
THIN-WALLED STRUCTURES, 2021, 169 (169)
[34]   Thermal buckling load optimization of laminated composite plates [J].
Topal, U. ;
Uzman, Ue. .
THIN-WALLED STRUCTURES, 2008, 46 (06) :667-675
[35]   Mechanical and thermal buckling analysis of laminated composite plates [J].
Kettaf, Fatima Zohra ;
Beguediab, Mohamed ;
Benguediab, Soumia ;
Selim, Mahmoud M. ;
Tounsi, Abdelouahed ;
Hussain, Muzamal .
STEEL AND COMPOSITE STRUCTURES, 2021, 40 (05) :697-708
[36]   A computational iterative design method for bend-twist deformation in composite ship propeller blades for thrusters [J].
Rokvam, Sondre O. ;
Vedvik, Nils Petter ;
Mark, Lukas ;
Romcke, Eivind ;
Olnes, Jon ;
Savio, Luca ;
Echtermeyer, Andreas T. .
OPEN ENGINEERING, 2023, 13 (01)
[37]   Fluid-Structure Interaction Analysis of a Wind Turbine Blade with Passive Control by Bend-Twist Coupling [J].
Tamayo-Avendano, Jorge Mario ;
Patino-Arcila, Ivan David ;
Nieto-Londono, Cesar ;
Sierra-Perez, Julian .
ENERGIES, 2023, 16 (18)
[38]   Smart Rotor With Trailing Edge Flap Considering Bend-Twist Coupling and Aerodynamic Damping: Modeling and Control [J].
Zhang, Wenguang ;
Liu, Ruijie ;
Wang, Yifeng ;
Wang, Yuanyuan ;
Zhang, Xu .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2019, 141 (04)
[39]   Buckling Analysis of Laminated Composite Plates by Using Various Higher-Order Shear Deformation Theories [J].
Xiang, S. ;
Wang, J. ;
Ai, Y. T. ;
Li, G. -Ch. .
MECHANICS OF COMPOSITE MATERIALS, 2015, 51 (05) :645-654
[40]   Free vibration and buckling analyses of laminated composite plates with cutout [J].
Atilla, Dilek ;
Sencan, Cevdet ;
Goren Kiral, Binnur ;
Kiral, Zeki .
ARCHIVE OF APPLIED MECHANICS, 2020, 90 (11) :2433-2448