Wind Speed Forecasting Using Empirical Mode Decomposition and Regularized ELANFIS

被引:0
作者
Pillai, G. N. [1 ]
Shihabudheen, K., V [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Roorkee, Uttar Pradesh, India
来源
2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2017年
关键词
Neuro-fuzzy systems; Extreme learning machines (ELM); Empirical mode decomposition; wind speed prediction; EXTREME LEARNING-MACHINE; SUPPORT VECTOR MACHINES; FUZZY INFERENCE SYSTEM; PREDICTION; REGRESSION; ANFIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel hybrid method to predict the wind speed using empirical mode decomposition (EMD) and regularized extreme learning adaptive neuro-fuzzy inference system (RELANFIS). RELANFIS combines the learning capability of conventional adaptive neuro-fuzzy inference system (ANFIS) and faster computational speed of extreme learning machine (ELM) algorithm. EMD decomposes original wind speed data into finite IMFs and one residue. Then, each decomposed data series is predicted using RELANFIS model. Final prediction is obtained by the summation outputs of all RELANFIS sub models. Performance comparison with several popular EMD wind speed prediction methods shows that hybridization of EMD with RELANFIS gives the best prediction results.
引用
收藏
页码:1796 / 1802
页数:7
相关论文
共 32 条
[1]  
[Anonymous], DISCUSSION PAPERS GE
[2]  
[Anonymous], APPL SOFT C IN PRESS
[3]  
[Anonymous], COMPUT MAG
[4]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[5]   Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model [J].
Guo, Zhenhai ;
Zhao, Weigang ;
Lu, Haiyan ;
Wang, Jianzhou .
RENEWABLE ENERGY, 2012, 37 (01) :241-249
[6]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[7]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[8]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[9]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[10]   A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks [J].
Liu, Hui ;
Chen, Chao ;
Tian, Hong-qi ;
Li, Yan-fei .
RENEWABLE ENERGY, 2012, 48 :545-556