Fourier Transform and Convolutions on L p of a Vector Measure on a Compact Hausdorff Abelian Group

被引:5
作者
Calabuig, J. M. [1 ]
Galaz-Fontes, F. [2 ]
Navarrete, E. M. [2 ]
Sanchez-Perez, E. A. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[2] Ctr Invest Matemat, AC, Guanajuato 36240, Gto, Mexico
关键词
Countably additive vector measure; Space of p-integrable functions; Fourier transform; Convolution; Pettis integrability; MULTIPLICATION OPERATORS; INTEGRABLE FUNCTIONS; RESPECT; SPACES;
D O I
10.1007/s00041-012-9252-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let nu be a countably additive vector measure defined on the Borel subsets of a compact Hausdorff abelian group G. In this paper we define and study a vector valued Fourier transform and a vector valued convolution for functions which are (weakly) integrable with respect to nu. A form of the Riemann Lebesgue Lemma and a Uniqueness Theorem are established in this context. In order to study the vector valued convolution we discuss the invariance under reflection in G of these spaces of integrable functions. Finally we present a Young's type inequality in this setting and several relevant examples, namely related with the vector measure associated to different important classical operators coming from Harmonic Analysis.
引用
收藏
页码:312 / 332
页数:21
相关论文
共 13 条
  • [1] [Anonymous], 2002, Handbook of Measure Theory
  • [2] [Anonymous], 2004, INTRO HARMONIC ANAL, DOI DOI 10.1017/CBO9781139165372
  • [3] Fourier analysis with respect to bilinear maps
    Blasco, O.
    Calabuig, J. M.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (04) : 519 - 530
  • [4] Multiplication operators on spaces of integrable functions with respect to a vector measure
    del Campo, R.
    Fernandez, A.
    Ferrando, I.
    Mayoral, F.
    Naranjo, F.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 514 - 524
  • [5] Algebra structure for Lp of a vector measure
    Delgado, Olvido
    Miana, Pedro J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 355 - 363
  • [6] Diestel J., 1977, Vector Measures, Mathematical surveys and monographs, V15
  • [7] Complex interpolation of spaces of integrable functions with respect to a vector measure
    Fernandez, A.
    Mayoral, F.
    Naranjo, F.
    Sanchez-Perez, E. A.
    [J]. COLLECTANEA MATHEMATICA, 2010, 61 (03) : 241 - 252
  • [8] Multiplication operators on vector measure Orlicz spaces
    Ferrando, I.
    Galaz-Fontes, F.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (01): : 57 - 71
  • [9] Luxemburg W.A.J., 1971, RIESZ SPACES
  • [10] Optimal extension of the Hausdorff-Young inequality
    Mockenhaupt, G.
    Ricker, W. J.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 : 195 - 211