Wind power prediction considering the layout of the wind turbines and wind direction

被引:0
作者
ChenXiang [1 ]
Wang Fu-jun
Liu Tian-qi [1 ]
Chen Zhen-huan
Li Xiao-hu
Guan Tie-ying
机构
[1] Sichuan Univ, Sch Elect Engn & Informat, Chengdu, Peoples R China
来源
2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC) | 2012年
关键词
component; wind farms; ultra short-term power forecasts; wind; unit layout;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It Points out that when the wind farms are undertaking the short-term forecast, wind power will be all crew for a machine to equivalent the whole prediction of the deficiencies, and through the forecast of the contrast, it proves the influence of the overall prediction power according to the units in different layouts. Considering the wind power prediction, the established prediction model of wind farms super short term is be tested by the example, which improves that wind speed has greater influence on the overall power output and it is important to predict the wind direction when predict the speed in order to improve the prediction precision of power
引用
收藏
页数:4
相关论文
共 50 条
[21]   VIBRATIONS RELATED TO WIND TURBINES [J].
Tronac, Augustina Sandina ;
Dracea, Dragos ;
Mustata, Sebastian .
GEOCONFERENCE ON ENERGY AND CLEAN TECHNOLOGIES, 2013, :285-292
[22]   A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection [J].
Jiao, Runhai ;
Han, Zhuoting ;
Liu, Xuan ;
Zhou, Changyu ;
Du, Min .
IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (03) :3178-3192
[23]   Optimization of Constant Power Control of Wind Turbines to Provide Power Reserves [J].
Van de Vyver, Jan ;
De Kooning, Jeroen D. M. ;
Meersman, Bart ;
Vandoorn, Tine L. ;
Vandevelde, Lieven .
2013 48TH INTERNATIONAL UNIVERSITIES' POWER ENGINEERING CONFERENCE (UPEC), 2013,
[24]   Multisource Wind Speed Fusion Method for Short-Term Wind Power Prediction [J].
An, Jianqi ;
Yin, Feng ;
Wu, Min ;
She, Jinhua ;
Chen, Xin .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) :5927-5937
[25]   Wind spectral characteristics on strength design of floating offshore wind turbines [J].
Udoh, Ikpoto E. ;
Zou, Jun .
OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03) :281-312
[26]   Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms [J].
Cheng, Shyuan ;
Jin, Yaqing ;
Chamorro, Leonardo P. .
ENERGIES, 2020, 13 (07)
[27]   Wind Power Prediction for Wind Farm Clusters Based on the Multifeature Similarity Matching Method [J].
Peng, Xiaosheng ;
Chen, Yuzhu ;
Cheng, Kai ;
Wang, Hongyu ;
Zhao, Yunzheng ;
Wang, Bo ;
Che, Jianfeng ;
Liu, Chun ;
Wen, Jinyu ;
Lu, Chen ;
Lee, Wei-Jen .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) :4679-4688
[28]   Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space [J].
Yu, Ruiguo ;
Liu, Zhiqiang ;
Li, Xuewei ;
Lu, Wenhuan ;
Ma, Degang ;
Yu, Mei ;
Wang, Jianrong ;
Li, Bin .
APPLIED ENERGY, 2019, 238 :249-257
[29]   A Solution of Interval Power Flow Considering Correlation of Wind Power [J].
Guo, Xiaoxuan ;
Bao, Haibo ;
Xiao, Jing ;
Chen, Shaonan .
IEEE ACCESS, 2021, 9 :78915-78924
[30]   Active Power Control on wind turbines: impact on mechanical loads [J].
Ibanez, Bernabe ;
Inthamoussou, Fernando A. ;
De Battista, Hernan .
IEEE LATIN AMERICA TRANSACTIONS, 2023, 21 (09) :984-990