Wind power prediction considering the layout of the wind turbines and wind direction

被引:0
作者
ChenXiang [1 ]
Wang Fu-jun
Liu Tian-qi [1 ]
Chen Zhen-huan
Li Xiao-hu
Guan Tie-ying
机构
[1] Sichuan Univ, Sch Elect Engn & Informat, Chengdu, Peoples R China
来源
2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC) | 2012年
关键词
component; wind farms; ultra short-term power forecasts; wind; unit layout;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It Points out that when the wind farms are undertaking the short-term forecast, wind power will be all crew for a machine to equivalent the whole prediction of the deficiencies, and through the forecast of the contrast, it proves the influence of the overall prediction power according to the units in different layouts. Considering the wind power prediction, the established prediction model of wind farms super short term is be tested by the example, which improves that wind speed has greater influence on the overall power output and it is important to predict the wind direction when predict the speed in order to improve the prediction precision of power
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection
    Jiao, Runhai
    Han, Zhuoting
    Liu, Xuan
    Zhou, Changyu
    Du, Min
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (03) : 3178 - 3192
  • [22] Optimization of Constant Power Control of Wind Turbines to Provide Power Reserves
    Van de Vyver, Jan
    De Kooning, Jeroen D. M.
    Meersman, Bart
    Vandoorn, Tine L.
    Vandevelde, Lieven
    2013 48TH INTERNATIONAL UNIVERSITIES' POWER ENGINEERING CONFERENCE (UPEC), 2013,
  • [23] Multisource Wind Speed Fusion Method for Short-Term Wind Power Prediction
    An, Jianqi
    Yin, Feng
    Wu, Min
    She, Jinhua
    Chen, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 5927 - 5937
  • [24] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312
  • [25] Wind Power Prediction for Wind Farm Clusters Based on the Multifeature Similarity Matching Method
    Peng, Xiaosheng
    Chen, Yuzhu
    Cheng, Kai
    Wang, Hongyu
    Zhao, Yunzheng
    Wang, Bo
    Che, Jianfeng
    Liu, Chun
    Wen, Jinyu
    Lu, Chen
    Lee, Wei-Jen
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 4679 - 4688
  • [26] Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms
    Cheng, Shyuan
    Jin, Yaqing
    Chamorro, Leonardo P.
    ENERGIES, 2020, 13 (07)
  • [27] Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space
    Yu, Ruiguo
    Liu, Zhiqiang
    Li, Xuewei
    Lu, Wenhuan
    Ma, Degang
    Yu, Mei
    Wang, Jianrong
    Li, Bin
    APPLIED ENERGY, 2019, 238 : 249 - 257
  • [28] A Solution of Interval Power Flow Considering Correlation of Wind Power
    Guo, Xiaoxuan
    Bao, Haibo
    Xiao, Jing
    Chen, Shaonan
    IEEE ACCESS, 2021, 9 : 78915 - 78924
  • [29] Active Power Control on wind turbines: impact on mechanical loads
    Ibanez, Bernabe
    Inthamoussou, Fernando A.
    De Battista, Hernan
    IEEE LATIN AMERICA TRANSACTIONS, 2023, 21 (09) : 984 - 990
  • [30] Power Prediction of Wind Farm Considering the Wake Effect and its Boundary Layer Compensation
    Tang, Zao
    Liu, Jia
    Ni, Jielong
    Zhang, Jimiao
    Zeng, Pingliang
    Ren, Pengzhe
    Su, Tong
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2024, 9 (06) : 19 - 29