Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation

被引:136
作者
Liu, Xin [1 ,2 ]
Jiao, Yan [1 ,2 ]
Zheng, Yao [1 ,2 ]
Jaroniec, Mietek [3 ,4 ]
Qiao, Shi-Zhang [1 ,2 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Ctr Mat Energy & Catalysis, Adelaide, SA 5005, Australia
[3] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[4] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
基金
澳大利亚研究理事会;
关键词
GAS-DIFFUSION ELECTRODES; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; NITRITE IONS; THEORETICAL INSIGHTS; NITRATE REDUCTION; COPPER ELECTRODES; CU(100) SURFACE; CO2;
D O I
10.1038/s41467-022-33258-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals. Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Electrochemical CO Reduction: A Property of the Electrochemical Interface [J].
Bagger, Alexander ;
Arnarson, Logi ;
Hansen, Martin H. ;
Spohr, Eckhard ;
Rossmeisl, Jan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (04) :1506-1514
[2]   C-N bond forming cross-coupling reactions: an overview [J].
Bariwal, Jitender ;
Van der Eycken, Erik .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (24) :9283-9303
[3]   Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl- [J].
Butcher, Dennis P., Jr. ;
Gewirth, Andrew A. .
NANO ENERGY, 2016, 29 :457-465
[4]   Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea [J].
Cao, Na ;
Quan, Yueli ;
Guan, Anxiang ;
Yang, Chao ;
Ji, Yali ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 577 :109-114
[5]   CONSTRAINED REACTION COORDINATE DYNAMICS FOR THE SIMULATION OF RARE EVENTS [J].
CARTER, EA ;
CICCOTTI, G ;
HYNES, JT ;
KAPRAL, R .
CHEMICAL PHYSICS LETTERS, 1989, 156 (05) :472-477
[6]   Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions [J].
Chen, Chen ;
Zhu, Xiaorong ;
Wen, Xiaojian ;
Zhou, Yangyang ;
Zhou, Ling ;
Li, Hao ;
Tao, Li ;
Li, Qiling ;
Du, Shiqian ;
Liu, Tingting ;
Yan, Dafeng ;
Xie, Chao ;
Zou, Yuqin ;
Wang, Yanyong ;
Chen, Ru ;
Huo, Jia ;
Li, Yafei ;
Cheng, Jun ;
Su, Hui ;
Zhao, Xu ;
Cheng, Weiren ;
Liu, Qinghua ;
Lin, Hongzhen ;
Luo, Jun ;
Chen, Jun ;
Dong, Mingdong ;
Cheng, Kai ;
Li, Conggang ;
Wang, Shuangyin .
NATURE CHEMISTRY, 2020, 12 (08) :717-724
[7]   Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J].
Chen, Gao-Feng ;
Yuan, Yifei ;
Jiang, Haifeng ;
Ren, Shi-Yu ;
Ding, Liang-Xin ;
Ma, Lu ;
Wu, Tianpin ;
Lu, Jun ;
Wang, Haihui .
NATURE ENERGY, 2020, 5 (08) :605-613
[8]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[9]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[10]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805