Retinex Based Image Enhancement via General Dictionary Convolutional Sparse Coding

被引:9
作者
Yoon, Jongsu [1 ]
Choe, Yoonsik [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul 03722, South Korea
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 12期
关键词
Retinex; image enhancement; convolutional sparse coding; human visual system; VARIATIONAL FRAMEWORK; MODEL;
D O I
10.3390/app10124395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Retinex theory represents the human visual system by showing the relative reflectance of an object under various illumination conditions. A feature of this human visual system is color constancy, and the Retinex theory is designed in consideration of this feature. The Retinex algorithms have been popularly used to effectively decompose the illumination and reflectance of an object. The main aim of this paper is to study image enhancement using convolution sparse coding and sparse representations of the reflectance component in the Retinex model over a learned dictionary. To realize this, we use the convolutional sparse coding model to represent the reflectance component in detail. In addition, we propose that the reflectance component can be reconstructed using a trained general dictionary by using convolutional sparse coding from a large dataset. We use singular value decomposition in limited memory to construct a best reflectance dictionary. This allows the reflectance component to provide improved visual quality over conventional methods, as shown in the experimental results. Consequently, we can reduce the difference in perception between humans and machines through the proposed Retinex-based image enhancement.
引用
收藏
页数:18
相关论文
共 28 条
[1]  
[Anonymous], FOUND TRENDS MACH LE
[2]   Issues About Retinex Theory and Contrast Enhancement [J].
Bertalmio, Marcelo ;
Caselles, Vicent ;
Provenzi, Edoardo .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 83 (01) :101-119
[3]   Retinex image enhancement via a learned dictionary [J].
Chang, Huibin ;
Ng, Michael K. ;
Wang, Wei ;
Zeng, Tieyong .
OPTICAL ENGINEERING, 2015, 54 (01)
[4]   Consensus Convolutional Sparse Coding [J].
Choudhury, Biswarup ;
Swanson, Robin ;
Heide, Felix ;
Wetzstein, Gordon ;
Heidrich, Wolfgang .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4290-4298
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
Ebner M, 2007, COLOR CONSTANCY, V7
[7]  
Finlayson G. D., 2002, Color Imaging Conf, P73
[8]   No-Reference Image Sharpness Assessment in Autoregressive Parameter Space [J].
Gu, Ke ;
Zhai, Guangtao ;
Lin, Weisi ;
Yang, Xiaokang ;
Zhang, Wenjun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (10) :3218-3231
[9]  
Heide F, 2015, PROC CVPR IEEE, P5135, DOI 10.1109/CVPR.2015.7299149
[10]   A variational framework for Retinex [J].
Kimmel, R ;
Elad, M ;
Shaked, D ;
Keshet, R ;
Sobel, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 52 (01) :7-23