HOMOMORPHISMS OF FINITARY INCIDENCE ALGEBRAS

被引:4
作者
Dugas, Manfred [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Incidence algebras; Zassenhaus algebras;
D O I
10.1080/00927872.2012.662708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any field K and poset P, the incidence space I(P) and the finitary incidence algebra FI(P) were introduced in [5]. The K-vector space I(P) is an FI(P)-bimodule. We investigate K-linear maps from FI(P) to I(P) that preserve submodules. We also consider the idealization FI(P)(+)I(P) of I(P).
引用
收藏
页码:2373 / 2384
页数:12
相关论文
共 5 条
[1]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[2]   Left rigid rings [J].
Buckner, Joshua ;
Dugas, Manfred .
JOURNAL OF ALGEBRA, 2007, 309 (01) :192-206
[3]   ZASSENHAUS ALGEBRAS [J].
Buckner, Joshua ;
Dugas, Manfred .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (06) :1793-1813
[4]   ZASSENHAUS RINGS AS IDEALIZATION OF MODULES [J].
Dugas, Manfred .
JOURNAL OF COMMUTATIVE ALGEBRA, 2010, 2 (02) :139-158
[5]   Finitary Incidence Algebras [J].
Khripchenko, N. S. ;
Novikov, B. V. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) :1670-1676