Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part I: Simple Model Study*

被引:36
作者
Lu, Feiyu [1 ,2 ]
Liu, Zhengyu [1 ,2 ,3 ]
Zhang, Shaoqing [4 ]
Liu, Yun [1 ,2 ]
机构
[1] Univ Wisconsin, Nelson Inst Ctr Climat Res, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA
[3] Peking Univ, Lab Climate Ocean & Atmosphere Studies, Beijing 100871, Peoples R China
[4] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
关键词
ENSEMBLE KALMAN FILTER; ATMOSPHERIC DATA ASSIMILATION; CLIMATE MODEL; INFLATION; SYSTEM;
D O I
10.1175/MWR-D-14-00322.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper studies a new leading averaged coupled covariance (LACC) method for the strongly coupled data assimilation (SCDA). The SCDA not only uses the coupled model to generate the forecast and assimilate observations into multiple model components like the weakly coupled version (WCDA), but also applies a cross update using the coupled covariance between variables from different model components. The cross update could potentially improve the balance and quality of the analysis, but its implementation has remained a great challenge in practice because of different time scales between model components. In a typical extratropical coupled system, the ocean-atmosphere correlation shows a strong asymmetry with the maximum correlation occurring when the atmosphere leads the ocean by about the decorrelation time of the atmosphere. The LACC method utilizes such asymmetric structure by using the leading forecasts and observations of the fast atmospheric variable for cross update, therefore, increasing the coupled correlation and enhancing the signal-to-noise ratio in calculating the coupled covariance. Here it is applied to a simple coupled model with the ensemble Kalman filter (EnKF). With the LACC method, the SCDA reduces the analysis error of the oceanic variable by over 20% compared to the WCDA and 10% compared to the SCDA using simultaneous coupled covariance. The advantage of the LACC method is more notable when the system contains larger errors, such as in the cases with smaller ensemble size, bigger time-scale difference, or model biases.
引用
收藏
页码:3823 / 3837
页数:15
相关论文
共 38 条
[1]   An adaptive covariance inflation error correction algorithm for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) :210-224
[2]   Spatially and temporally varying adaptive covariance inflation for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :72-83
[3]  
Barsugli JJ, 1998, J ATMOS SCI, V55, P477, DOI 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO
[4]  
2
[5]   An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution [J].
Bretherton, CS ;
Battisti, DS .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (06) :767-770
[6]   Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting [J].
Buehner, M .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) :1013-1043
[7]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[8]  
2
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]  
Fisher R., 1915, BIOMETRIKA, V10, P507, DOI DOI 10.1093/BIOMET/10.4.507