Pragmatic optimizations for better scientific utilization of large supercomputers

被引:22
作者
Dubey, Anshu [1 ,2 ]
Calder, Alan C. [3 ]
Daley, Christopher [1 ,2 ]
Fisher, Robert T.
Graziani, C. [1 ,2 ]
Jordan, George C. [1 ]
Lamb, Donald Q. [1 ,2 ]
Reid, Lynn B. [4 ,5 ]
Townsley, Dean M. [6 ]
Weide, Klaus [1 ]
机构
[1] Univ Chicago, Computat Inst, Flash Ctr Computat Sci Astron & Astrophys, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Argonne, IL 60439 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA
[4] NTEC Environm Technol, Subiaco, WA, Australia
[5] Univ Western Australia, Crawley, WA, Australia
[6] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
FLASH; supercomputer; optimizations; SN Ia; GCD model; GRAVITATIONALLY CONFINED DETONATION; ASTROPHYSICAL THERMONUCLEAR FLASHES; ADAPTIVE MESH REFINEMENT; IA-SUPERNOVAE; DEFLAGRATION PHASE; CARBON IGNITION; WHITE-DWARF; MODEL; HYDRODYNAMICS; SIMULATIONS;
D O I
10.1177/1094342012464404
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in modeling and algorithms, combined with growth in computing resources, have enabled simulations of multiphysics-multiscale phenomena that can greatly enhance our scientific understanding. However, on currently available high-performance computing (HPC) resources, maximizing the scientific outcome of simulations requires many trade-offs. In this paper we describe our experiences in running simulations of the explosion phase of Type Ia supernovae on the largest available platforms. The simulations use FLASH, a modular, adaptive mesh, parallel simulation code with a wide user base. The simulations use multiple physics components: hydrodynamics, gravity, a sub-grid flame model, a three-stage burning model, and a degenerate equation of state. They also use Lagrangian tracer particles, which are then post-processed to determine the nucleosynthetic yields. We describe the simulation planning process, and the algorithmic optimizations and trade-offs that were found to be necessary. Several of the optimizations and trade-offs were made during the course of the simulations as our understanding of the challenges evolved, or when simulations went into previously unexplored physical regimes. We also briefly outline the anticipated challenges of, and our preparations for, the next-generation computing platforms.
引用
收藏
页码:360 / 373
页数:14
相关论文
共 38 条
[1]  
Antypas K, 2006, INT C PAR DISTR PROC, P292
[2]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[3]   Capturing the fire: Flame energetics and neutronization for Type Ia supernova simulations [J].
Calder, A. C. ;
Townsley, D. M. ;
Seitenzahl, I. R. ;
Peng, F. ;
Messer, O. E. B. ;
Vladimirova, N. ;
Brown, E. F. ;
Truran, J. W. ;
Lamb, D. Q. .
ASTROPHYSICAL JOURNAL, 2007, 656 (01) :313-332
[4]  
Calder A C, 2000, P SUP 2000
[5]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[6]   EFFICIENT SOLUTION ALGORITHMS FOR THE RIEMANN PROBLEM FOR REAL GASES [J].
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :264-289
[7]   IMPOSING A LAGRANGIAN PARTICLE FRAMEWORK ON AN EULERIAN HYDRODYNAMICS INFRASTRUCTURE IN FLASH [J].
Dubey, A. ;
Daley, C. ;
ZuHone, J. ;
Ricker, P. M. ;
Weide, K. ;
Graziani, C. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2012, 201 (02)
[8]   Parallel algorithms for moving Lagrangian data on block structured Eulerian meshes [J].
Dubey, Anshu ;
Antypas, Katie ;
Daley, Christopher .
PARALLEL COMPUTING, 2011, 37 (02) :101-113
[9]   Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code [J].
Dubey, Anshu ;
Antypas, Katie ;
Ganapathy, Murali K. ;
Reid, Lynn B. ;
Riley, Katherine ;
Sheeler, Dan ;
Siegel, Andrew ;
Weide, Klaus .
PARALLEL COMPUTING, 2009, 35 (10-11) :512-522
[10]  
Dursi LJ, 2005, LECT NOTES COMP SCI, V41, P103