Pattern Classification Based on Conformal Geometric Algebra and Optimization Techniques

被引:0
作者
Cruz, Benjamin [1 ]
Barron, Ricardo [1 ]
Sossa, Humberto [1 ]
机构
[1] IPN, Ctr Invest Computac, Mexico City 07738, DF, Mexico
来源
MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 2008年 / 5317卷
关键词
Conformal Geometric Algebra; Pattern Classification; Optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conformal Geometric Algebra (CGA) is a high level language commonly used in mathematical, physics and engineering problems. At a top level, CGA is a free coordinate tool for designing and modeling geometric problems; at a low level CGA provides a new coordinate framework for numeric processing in problem solving. In this paper we show how to use quadratic programming and CGA for, given two sets p and g of points in R(n), construct an optimal separation sphere S such that, all points of p are contained inside of it, and all points of g are outside. To classify an unknown pattern x, an inner product must be applied between x and S. Some numerical and real examples to test the proposal are given.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 9 条
[1]  
BARRON R, 2008, AGACSE IN PRESS
[2]  
BARRON R, 2006, RES COMPUTING SCI, V21, P49
[3]  
Clifford P., 1878, Am. J. Math, V1, P350, DOI [DOI 10.2307/2369379, 10.2307/2369379]
[4]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[5]  
Dorst Leo., 2005, 3d Euclidean geometry through conformal geometric algebra (a GAViewer tutorial)
[6]  
Hestenes D., 2012, CLIFFORD ALGEBRA GEO
[7]  
HILDEBRAND D, 2004, EUROGRAPHICS 2004 TU
[8]  
HILDEBRAND D, 2005, GEOMETRIC COMPUTING
[9]  
Perwass C., 2003, 0310 CHRIST ALBR U K