Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms

被引:0
|
作者
Colby, Mitch [1 ]
Nasroullahi, Ehsan [1 ]
Tumer, Kagan [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
来源
GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2011年
关键词
Wave Energy; Neural Network; Function Approximation; Optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wave energy converters promise to be a viable alternative to current electrical generation methods. However, these generators must become more efficient before wide-scale industrial use can become cost-effective. The efficiency of these devices is primarily dependent upon their geometry and ballast configuration which are both difficult to evaluate, due to slow computation time and high computation cost of current models. In this paper, we use evolutionary algorithms to optimize the ballast geometry of a wave energy generator using a two step process. First, we generate a function approximator (neural network) to predict wave energy converter power output with respect to key geometric design variables. This is a critical step as the computation time of using a full model (e.g., AQWA) to predict energy output prohibits the use of an evolutionary algorithm for design optimization. The function approximator reduced the computation time by over 99% while having an average error of only 1.5%. The evolutionary algorithm then optimized the weight distribution of a wave energy generator, resulting in an 84% improvement in power output over a ballast-free wave energy converter.
引用
收藏
页码:1739 / 1746
页数:8
相关论文
共 50 条
  • [1] Analysis of various algorithms for optimizing the wave energy converters associated with a sloped wall-type breakwater
    Jeong, Ho-Jin
    Koo, Weoncheol
    OCEAN ENGINEERING, 2023, 276
  • [2] On the control design of wave energy converters with wave prediction
    Abdelkhalik O.
    Robinett R.
    Zou S.
    Bacelli G.
    Coe R.
    Bull D.
    Wilson D.
    Korde U.
    Abdelkhalik, Ossama (ooabdelk@mtu.edu), 2016, Springer International Publishing (02) : 473 - 483
  • [3] Integrated approach for optimizing groundwater monitoring systems using evolutionary algorithms
    Mahmod, Wael Elham
    Mohamed, Hassan, I
    Suleiman, Ahmed H.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2021, 66 (13): : 1963 - 1978
  • [4] Efficient design of hybrid renewable energy systems using evolutionary algorithms
    Bernal-Agustin, Jose L.
    Dufo-Lopez, Rodolfo
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 479 - 489
  • [5] Comparative study on metaheuristic algorithms for optimising wave energy converters
    Cao, Feifei
    Han, Meng
    Shi, Hongda
    Li, Ming
    Liu, Zhen
    OCEAN ENGINEERING, 2022, 247
  • [6] Heuristic filter design: Optimizing the Gaia photometric system for stellar parametrization using evolutionary algorithms
    Bailer-Jones, CAL
    Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun - Proceedings, Vols 1 and 2, 2005, 560 : 423 - 427
  • [7] Using evolutionary algorithms to design antennas with greater sensitivity to ultrahigh energy neutrinos
    Rolla, J.
    Machtay, A.
    Patton, A.
    Banzhaf, W.
    Connolly, A.
    Debolt, R.
    Deer, L.
    Fahimi, E.
    Ferstle, E.
    Kuzma, P.
    Pfendner, C.
    Sipe, B.
    Staats, K.
    Wissel, S. A.
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [8] Optimized design of 3-DOF buoy wave energy converters under a specified wave energy spectrum
    Tao, Ji
    Cao, Feifei
    Dong, Xiaochen
    Li, Demin
    Shi, Hongda
    APPLIED OCEAN RESEARCH, 2021, 116 (116)
  • [9] Review of mooring design for floating wave energy converters
    Xu, Sheng
    Wang, Shan
    Soares, C. Guedes
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 111 : 595 - 621
  • [10] Optimizing the Energy Consumption of Blockchain-Based Systems Using Evolutionary Algorithms: A New Problem Formulation
    Alofi, Akram
    Bokhari, Mahmoud A.
    Bahsoon, Rami
    Hendley, Robert
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2022, 7 (04): : 910 - 922