Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes

被引:38
作者
Barrenechea, Gabriel R. [1 ]
Burman, Erik [2 ]
Karakatsani, Fotini [3 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] UCL, Dept Math, Gower St, London WC1E 6BY, England
[3] Univ Chester, Dept Math, Thornton Sci Pk, Chester CH2 4NU, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
DISCRETE MAXIMUM PRINCIPLE; SCALAR CONSERVATION EQUATIONS; GALERKIN APPROXIMATIONS; CONVERGENCE;
D O I
10.1007/s00211-016-0808-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
引用
收藏
页码:521 / 545
页数:25
相关论文
共 23 条
[1]   ON MONOTONICITY-PRESERVING STABILIZED FINITE ELEMENT APPROXIMATIONS OF TRANSPORT PROBLEMS [J].
Badia, Santiago ;
Hierro, Alba .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2673-A2697
[2]  
Barrenechea G. R., 2015, SIAM J NUME IN PRESS
[3]   Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in one dimension [J].
Barrenechea, Gabriel R. ;
John, Volker ;
Knobloch, Petr .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) :1729-1756
[4]   Stabilized Galerkin approximation of convection-diffusion-reaction equations: Discrete maximum principle and convergence [J].
Burman, E ;
Ern, A .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1637-1652
[5]   Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes [J].
Burman, E ;
Ern, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :641-646
[6]   Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation [J].
Burman, E ;
Ern, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (35) :3833-3855
[7]   On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws [J].
Burman, Erik .
BIT NUMERICAL MATHEMATICS, 2007, 47 (04) :715-733
[8]  
Ern A., 2013, Theory and Practice of Finite Elements, V159
[9]   WEIGHTING THE EDGE STABILIZATION [J].
Ern, Alexandre ;
Guermond, Jean-Luc .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) :1655-1677
[10]  
Gilbarg D., 1983, GRUND MATH WISS, V224, DOI [10.1007/978-3-642-61798-0., DOI 10.1007/978-3-642-61798-0]